Bioplastics are developed to replace oil-derived plastics due to the high consumption of oil and related environmental impacts of oil-derived plastics. It was predicted that bioplastics can potentially replace 94% of conventional plastic production. With their increasing market share, more bioplastics will end in conventional post-consumer plastic waste streams. Although part of bioplastics is biodegradable and could be biologically decomposed, mechanical recycling achieves higher ecological benefits mainly because of its low pollution risk and the reduction in requirement for virgin feedstock. In this study, the classification of lightweight packaging waste with inflow of bioplastics, more specifically polylactic acid (PLA), was analysed with near-infrared spectroscopy to evaluate the influence of bioplastics on sorting processes of conventional plastics. Besides which, the sortability of PLA was determined through investigating the physical and the spectroscopic characteristics of both non-degraded and degraded PLA. The results show that the classification of all the materials was possible with a pixel-based accuracy of higher than 97.4% and PLA does not influence the sorting process of conventional plastics regarding detection and classification. Furthermore, the sorting of PLA from post-consumer waste is possible, which makes further recycling theoretically achievable.