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A B S T R A C T   

Digital technologies hold enormous potential for improving the performance of future-generation sorting and processing 
plants; however, this potential remains largely untapped. Improved sensor-based material flow characterization (SBMC) 
methods could enable new sensor applications such as adaptive plant control, improved sensor-based sorting (SBS), and 
more far-reaching data utilizations along the value chain. This review aims to expedite research on SBMC by (i) providing 
a comprehensive overview of existing SBMC publications, (ii) summarizing existing SBMC methods, and (iii) identifying 
future research potentials in SBMC. By conducting a systematic literature search covering the period 2000 – 2021, we 
identified 198 peer-reviewed journal articles on SBMC applications based on optical sensors and machine learning al
gorithms for dry-mechanical recycling of non-hazardous waste. The review shows that SBMC has received increasing 
attention in recent years, with more than half of the reviewed publications published between 2019 and 2021. While 
applications were initially focused solely on SBS, the last decade has seen a trend toward new applications, including 
sensor-based material flow monitoring, quality control, and process monitoring/control. However, SBMC at the material 
flow and process level remains largely unexplored, and significant potential exists in upscaling investigations from 
laboratory to plant scale. Future research will benefit from a broader application of deep learning methods, increased use 
of low-cost sensors and new sensor technologies, and the use of data streams from existing SBS equipment. These ad
vancements could significantly improve the performance of future-generation sorting and processing plants, keep more 
materials in closed loops, and help paving the way towards circular economy.  
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1. Introduction 

Global material extraction has more than tripled from approximately 
27 billion tons in 1970 to approximately 92 billion tons in 2017 (IRP, 
2019), and may more than double by 2050 (IRP, 2017). The extraction 
and processing of natural resources make up approximately 50% of total 
greenhouse gas emissions and account for more than 90% of water stress 
and biodiversity loss (IRP, 2019). Accelerating climate change (IPCC, 
2021) and biodiversity loss (Dirzo et al., 2014; WWF, 2020) indicate the 
urgency and critical importance of transitioning the world to sustainable 
development within current planetary boundaries (O’Neill et al., 2018; 
Rockström et al., 2009). 

In the interests of sustainable development, the circular economy 
concept aims to reduce, alternatively reuse, recycle, and recover mate
rials in production, distribution, and consumption processes (Kirchherr 
et al., 2017). Moving towards a circular economy requires streamlined 
efforts of all stakeholders along the value chain. For example, products 
have to be designed with a focus on durability, reusability, upgrad
ability, and reparability; packaging materials have to be designed for 
reuse and recyclability. For products and packaging whose lifespan 
cannot be further extended (“end-of-life”), high-quality recycling should 
keep valuable materials in closed material loops as long as possible 
(European Commission, 2020). 

In 2018, about 808.9 million tons of waste were generated in the EU- 
27 (excluding major mineral wastes) (Eurostat, 2021a), of which 38.1 wt 
% was fed into recycling processes (Eurostat, 2020). After recycling, 
secondary raw materials can—if their quality is sufficient—substitute 
primary raw materials, and achieve significant environmental benefits 
because primary raw material extraction is avoided, and secondary raw 
materials often have significantly lower environmental footprints 
(Astrup et al., 2009; Bajpai, 2014; Grimes et al., 2008; Shen et al., 2010; 
Simion et al., 2013). 

Nevertheless, the current material supply in the EU is still largely 
dependent on primary resources, and as of 2018, only 12.2 wt% of used 
materials have come from secondary resources (Eurostat, 2021b). 
Therefore, significant improvements along the value chain are needed to 
increase the substitution of primary raw materials (IRP, 2019). 

Increasing the performance of the future-generation of mechanical 
recycling processes would largely contribute to this goal through (i) 
recovering a higher amount of secondary raw materials from existing 
waste flows and (ii) producing secondary raw materials in higher quality 
to enable a high-value substitution of primary raw materials. 

1.1. Concepts for increased performance of future-generation mechanical 
recycling processes 

Mechanical recycling of valuable materials from wastes into sec
ondary raw materials comprises two stages: First, in the pre-enrichment 
stage, sorting plants sort mixed wastes into preconcentrates (e.g., poly
propylene [PP] plastic bales). Second, in the refinement stage, processing 
plants refine preconcentrates into secondary raw materials (e.g., PP 
recyclates). Whereby material flows from mono-collection (e.g., PET 
bottles from deposit return systems) can be directly passed on to the 
refinement stage. 

Recently, several publications have argued that integrating digital 
technologies in mechanical recycling processes will increase their per
formance (Khodier et al., 2019; Sarc et al., 2019; Vrancken et al., 2017) 
and enhance circular economy in general (Antikainen et al., 2018; Berg 
et al., 2020; Hannan et al., 2015; Hedberg and Šipka, 2020; Hedberg 
et al., 2019; European Commission, 2020). More specifically, great po
tential is seen in increased exploitation of sensor technology in future- 
generation sorting and processing plants (Curtis et al., 2021; Feil 
et al., 2019; Khodier et al., 2019; Sarc et al., 2019; Serranti et al., 2011; 
Vrancken et al., 2017). 

First, advanced sensors and characterization algorithms could in
crease sorting performance and enable new sorting possibilities in 

sensor-based sorting (SBS), thus improving the quality and quantity of 
recovered secondary raw materials. Second, an automated and adaptive 
process control could significantly improve the overall performance of 
future-generation sorting and processing plants. A key prerequisite for 
this is the availability of real-time material flow characteristics (MFCs) 
as a decision-making basis for an intelligent process control algorithm. 
The process control algorithm could then adapt remotely controllable 
actuators to maximize a given goal function (Khodier et al., 2019), e.g., 
to optimize the ecological or economic performance of the plant. Third, 
sensor-based material flow data could be used further along the value 
chain to improve material circulation in general; for example, by using 
sensor data from sorting plants for improved waste collection or sensor 
data from processing plants for optimized secondary raw material use in 
production. 

Despite these promising advantages and applications, past reviews 
have concluded that digitization in waste management is “still in [its] 
infancy” (Sarc et al., 2019, p. 479) or “in an early phase” (Berg et al., 
2020, p. 2). In particular, more far-reaching applications of sensor 
technology beyond SBS remain largely unexploited. 

1.2. Key technology: Sensor-based material flow characterization 

A fundamental prerequisite to improve or enable the applications 
mentioned above is a precise characterization of anthropogenic material 
flows: While SBS processes separate material flows mainly based on 
accurate classification decisions at the particle level, adaptive process 
control and further applications require precise MFCs at the material 
flow level. The present paper focuses on predicting characteristics of 
anthropogenic material flows with sensor technology and machine 
learning (ML) algorithms—a process we refer to as sensor-based material 
flow characterization (SBMC). 

Scientific literature has so far reviewed applications of sensor tech
nology in waste management for waste segregation (Hannan et al., 
2015), recovery and production of solid recovered fuels (Vrancken et al., 
2017), identification and sorting of plastics (Araujo-Andrade et al., 
2021), SBS (Gundupalli et al., 2017a), digitalization in general (Sarc 
et al., 2019), and applications of ML algorithms for waste management 
(Abdallah et al., 2020; Ni et al., 2021; Xia et al., 2021b). However, a 
systematic review of SBMC has yet to be conducted in the context of 
high-value material recycling. 

1.3. Aim and scope 

This paper aims to expedite future research on SBMC by (i) providing 
a comprehensive overview of existing publications on SBMC, (ii) sum
marizing existing methods for SBMC, and (iii) indicating future research 
potentials in SBMC. 

The first emphasis of this review is on non-destructive optical sensors, 
as previous reviews have highlighted their suitability for SBMC 
(Vrancken et al., 2017). Compared to other sensors, optical sensors are 
advantageous for large-scale integration in sorting and processing plants 
because of their lower investment and operating costs and lower health 
risks compared with other sensors such as X-ray detection or laser- 
induced breakdown spectroscopy (LIBS)1 (Sarc et al., 2019; Vrancken 
et al., 2017). 

The second emphasis is on ML algorithms, which enable automatic 
extraction of MFCs from the acquired sensor data (Sarc et al., 2019; 
Vrancken et al., 2017). Compared to traditional algorithms, ML algo
rithms are not required to be explicitly programmed but can instead 
learn prediction patterns from given training data (Marsland, 2014). 

During conducting the review at hand, we noticed that there is no 
consistent terminology used in SBMC and that research in SBMC is 

1 Readers interested in LIBS applications may find interest in the reviews of 
Noll et al. (2018) and Legnaioli et al. (2020). 
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dispersed widely and is often not perceived as a homogeneous research 
field. Based on our review findings, we will thus firstly propose a unified 
SBMC terminology in Section 2 before we elaborate on our review 
method (Section 3), present and discuss obtained results (Section 4), 
indicate possible future research directions (Section 5), and draw final 
conclusions (Section 6). 

2. Background and terminology 

SBMC describes digitally capturing material flows with sensors and 
applying algorithms to extract MFCs from the acquired sensor data. As 
SBS (based on particle characteristics) has been applied and investigated 
for decades and is focused on pixel- or particle-based material classes, 
we focus here on process-relevant MFCs defined in Section 2.1. Section 
2.2 then determines how optical sensors can digitally capture material 
flows, and Section 2.3 elaborates on applying algorithms to extract 
process-relevant MFCs from sensor data. 

2.1. Process-relevant MFCs 

This paper defines a material flow as a material, or a mix of materials, 
which is regularly transported from position A to position B. Material 
transportation can be achieved either with continuous conveyors (e.g., 
belt conveyors) or non-continuous conveyors (e.g., wheel loaders) 
(Griemert and Römisch, 2020). In modern sorting and processing plants, 
material flows are almost exclusively transported on continuous con
veyors because of their higher efficiency and lower costs (Griemert and 
Römisch, 2020). Thus, material flows on continuous conveyors are 
especially relevant for SBMC applications (Sarc et al., 2019). 

In the context of SBMC, we propose to divide MFCs into extensive and 
intensive MFCs. The magnitude of extensive characteristics (e.g., mass or 
volume) depends on the size of a system; however, the magnitude of 
intensive characteristics (e.g., material composition or bulk density) is 
independent of a system’s size (Cohen and Mills, 2007; Tolman, 1917). 

2.1.1. Extensive MFCs 
Two extensive MFCs (eMFCs) of high practical relevance exist: the 

mass flow rate ṁ (Eq. (1)), which is the flow of mass m per unit of time t 
through a process line; and the volume flow V̇ (Eq. (2)), which is the 
flow of volume V per unit of time t through a process line (Ghasem and 
Henda, 2012). 

ṁ =
dm
dt

(1)  

V̇ =
dV
dt

(2) 

While the mass flow of any closed system is constant over time (law 
of conservation of mass) (Whitaker, 1975), volume flows might change 
over time, e.g., because of changing bulk densities (Curtis and Sarc, 
2021; Feil et al., 2019). Volume flows are therefore only of limited 
suitability for process evaluation; mass flows, on the other hand, cannot 
be measured directly with optical sensors. 

2.1.2. Intensive MFCs 
While process-relevant eMFCs are usually limited to mass and vol

ume flows, several intensive MFCs (iMFCs) have been proposed. For 
example, Christensen (2011) identifies (i) physical iMFCs (material 
composition, particle size distribution [PSD], moisture content, den
sities), (ii) chemical iMFCs (pH and alkalinity, organic matter, in
organics, calorific value, heating value), and (iii) performance iMFCs 
(compressibility, aqueous leachability of substances, biological de
gradability [respiration tests], biochemical methane potential). 

In addition, Vrancken et al. (2017) list nine so-called critical quality 
attributes in the context of material recovery and solid recovered fuel 
production: problematic objects, PSDs, calorific value, ash content, 

moisture, composition, biogenic carbon, biochemical methane poten
tial, and contaminants. 

Another group of iMFCs describes the material flow presentation. 
These presentation iMFCs include, e.g., the fluctuations of volume flows 
(Curtis et al., 2021; Feil et al., 2019) and occupation densities (Küppers 
et al., 2021; Küppers et al., 2020), as both strongly influence the (sensor- 
based) sorting performance (Kroell et al., 2022). 

Based on the available literature, we propose to structure MFCs into 
two groups, namely eMFCs and iMFCs, as well as four subgroups of 
iMFCs, as shown in Table 1. This listing is not exhaustive, as additional 
iMFCs are likely to be proposed for future applications. 

2.1.3. MFCs of high practical relevance for mechanical recycling processes 
As the scope of this review does not extend to reviewing research on 

all MFCs, we focus on MFCs of high practical relevance for mechanical 
recycling processes and the research vision described in Section 1.1. We 
have already identified two relevant eMFCs in Section 2.1.1: mass and 
volume flows. To identify iMFCs with high practical relevance, we will 
investigate iMFCs used in two major applications of (currently manual) 
material flow characterization: (i) technical process assessment and (ii) 
quality control of generated pre-concentrates. 

2.1.3.1. iMFCs in technical process assessment. Sorting and processing 
plants comprise a sequence of mechanical unit operations. For each 
mechanical unit operation (sorting, sieving, or comminution), one or 
more indicators are used to assess the process performance. Each indi
cator is calculated on the basis of one or multiple MFCs. MFCs used in 
these indicators are thus likely to be of high importance for future SBMC 
applications. 

Sorting processes are assessed on the basis of the two indicators purity 
(cw) and yield (Rw) (Feil et al., 2016). Purity (Eq. (3)) describes the mass 
fraction of valuable material (ṁw,i) in a material flow (ṁi). Yield (Eq. 
(4)) describes how much valuable material of the input material flow of 
a process (ṁw, input) is transferred to the desired output material flow 
(ṁw,output). 

cw,i =
ṁw,i

ṁi
(3)  

Rw =
ṁw, output

ṁw, input
=
ṁoutput*cw, output

ṁinput*cw, input
(4) 

Sieving processes are assessed on the basis of the screening efficiency 
ηs, which is the ratio of fines (index f) in the input material flow (ṁinput) 
that is transferred into the fine fraction (ṁFF) (Eq. (5)) (Schmidt et al., 
2006). 

Table 1 
Grouping of MFCs in eMFCs and iMFCs.  

Group Subgroup Examples 

eMFCs – Mass flow   
Volume flow 

iMFCs Physical iMFCs Material composition   
PSD   
Moisture content   
Densities  

Chemical iMFCs pH and alkalinity 
Organic matter 
Inorganics   
Calorific value  

Performance iMFCs Heating value 
Compressibility 
Aqueous leachability of substances 
Biological degradability 
Biochemical methane potential  

Presentation iMFCs Occupation density 
Particle singling 
Particle distances 
Fluctuations of iMFCs  
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ηs =
ṁf, FF

ṁf, input
=

ṁFF*cf, FF

ṁinput*cf, input
(5) 

Comminution processes are assessed by comparing the PSD of the 
output material flow with those of the input material flow, e.g., through 
the reduction ratio (Eq. (6)), where d is a measure for the PSD (Wills and 
Finch, 2016). 

nc =
doutput

dinput
(6) 

Notably, all presented indicators (Eq. (3) – Eq. (6)) are based on the 
iMFCs material flow composition and PSD, therefore being relevant iMFCs 
for technical process assessment. 

2.1.3.2. iMFCs in quality control. For quality control, slightly varying 
standards and guidelines exist across different countries. Table 2 shows 
that, for example, in Germany, quality control standards for secondary 
raw materials most frequently focus on material flow composition 
(100.0%), PSDs (66.7%), and moisture content (44.4%). 

Based on these findings, subsequent sections will primarily focus on 
the material (flow) composition and PSD. A comprehensive overview of 
existing publications on sensor-based moisture content determination is 
given by Vrancken et al. (2017). 

2.2. Optical sensors for material flow characterization 

Optical sensors cover the wavelength range between 100 nm and 1 
mm, which includes the ultraviolet (UV; 100 nm – 380 nm), visible 
(VIS; 380 nm – 780 nm), and infrared (IR; 780 nm – 1 mm) region (DIN 
5031-7, 1984). For SBMC applications, various sensors are available that 
can be integrated into sorting and processing plants. 

2.2.1. Available optical sensors for SBMC 
Optical sensors have been developed and applied to characterize 

materials across the UV, VIS, and IR regions (Beel, 2017; Flamme and 
Krämer, 2015; Küppers and Pomberger, 2017). Depending on the 
selected wavelength range and sensor arrangement (reflective or 
transmissive measurements), different material characteristics can be 
derived from the acquired sensor data. Despite the different wavelengths 
addressed, almost all currently applied sensors follow the same 
measuring principle: (i) an emitter emits electromagnetic radiation that 
interacts with the material to be characterized; (ii) a detector detects the 
reflected or transmitted radiation; (iii) an algorithm analyzes the 
captured sensor data to characterize the material (Chen et al., 2021a). 

Table 3 presents optical sensors suitable for measuring material 
characteristics for each spatial measuring point (pixel). In the VIS range, 
two types of sensors are commonly used: RGB-sensors (VIS-RGB), which 
capture the intensity at three different color channels (red [R], green 
[G], and blue [B]) and hyperspectral imaging (HSI) sensors, which 
measure the intensity at more than 100 different wavelength bins (VIS- 
HSI). In addition, sensors that cover (parts of) the VIS and near-infrared 
(NIR) range (VNIR) are available. Aside from measuring these pixel- 
based characteristics, most optical sensors can generate a spatial rep
resentation (image) of the recorded area (Jähne, 2005), which can be 
further analyzed at the particle or material flow level (cf. Section 2.3.1). 

2.2.2. Integration of sensors in sorting and processing plants 
Sensors can be integrated at different positions in sorting and pro

cessing plants with the goal of characterizing material flows or moni
toring (sub)processes. According to Kessler (2012), process-analytical 
methods can be classified as offline, atline, online, and inline. For all four 
methods, the taxonomy is defined by the process proximity of the 
analyzer in use (Kessler, 2012): (i) Offline analytics involve sampling the 
material flow and transporting the sample, e.g., to a laboratory, where 
the sample is analyzed. The obtained results are only available with a 
considerable time delay. (ii) Atline analytics are characterized by a 
reduced time delay, as the analysis occurs in close proximity to the 
process. (iii) Online analytics automatically analyze a part of the mate
rial flow through a bypass. (iv) Inline analytics measure the entire ma
terial flow, thus avoiding potential sampling errors. Real-time SBMC 
required for the applications outlined in Section 1.1 can only be ach
ieved by online and inline methods, discussed in subsequent sections. 

2.3. Sensor-data analysis for SBMC applications 

As most material and material flow characteristics cannot be directly 
measured with available sensors, suitable algorithms are often necessary 
to extract MFCs of interest (Sun, 2009). The necessary data analysis can 
be performed at different investigation levels, depending on the applica
tion and characteristic of interest. 

2.3.1. SBMC investigation levels 
Sensor data analysis for SBMC can be performed at four investigation 

levels: 
Pixel level. The information of a pixel is represented as a one- 

dimensional (1D) array containing a numeric value for each channel. 
For example, the 1D array of each pixel can represent measured heights 
(one channel), RGB colors (three channels), or NIR/VIS spectra 
(> 100 channels). In pixel-based analysis, the information of each pixel 
is considered independently. Characteristics extracted at pixel level 
include, e.g., material classes (per pixel) or heights. 

Particle level. Multiple, connected pixels can represent individual 
particles. In particle-based analysis, the information from multiple 
pixels representing a particle is combined. Furthermore, new particle- 
based features such as particle sizes and shapes often characterize in
dividual particles. Characteristics extracted at the particle level include, 
e.g., material classes (per particle) or particle sizes. 

Material flow level. A material flow consists of multiple particles. In 

Table 2 
Considered MFC in quality control standards and guidelines in Germany.  

Material flow Addressed MFC 

Material 
composition 

PSD Moisture Other MFCs 

Plastics1 ✓ – – – 
Glass2 ✓ ✓ ✓ – 
Non-ferrous 

metal scrap3 
✓ ✓ ✓(a) Origin, 

condition 
(corrosion)(a) 

Steel scrap4 ✓ ✓ – Bulk density 
Aggregates5 ✓ ✓ – pH content, 

electrical 
conductivity 

Paper6 ✓ – ✓ Age(b) 

WEEE(c), 7 ✓ – – – 
Textiles8 ✓ ✓(b) – Water retention, 

hydrophobic/ 
hydrophilic 

Compost9 ✓ ✓ ✓ rotting degree 

Percentage 
covered 

100.0% 66.7% 44.4% ≤ 11.1%  

(a) for some fractions; 
(b) fiber length and morphology; 
(c) waste of electrical and electronic equipment. 
1 (Der Grüne Punkt, 2021), 
2 (Bundesverband Glasindustrie e. V., 2014), 
3 (Verein Deutscher Metallhändler e. V., 1988), 
4 (Bundesvereinigung Deutscher Stahlrecycling- und Entsorgungsunterneh

men e. V., 1995), 
5 (TL Gestein-StB 04, 2007), 
6 (DIN EN 643, 2014), 
7 (ElektroG, 2015), 
8 (Bartl et al., 2011), 
9 (Bundesgütegemeinschaft Kompost e. V., 2021a, 2021b, 2021c). 
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material-flow-based analysis, the characteristics of multiple particles or 
pixels are combined to extract MFCs. Characteristics extracted at the 
material flow level include, e.g., material compositions, PSDs, or volume 
flows. 

Process level. A process involves two or more material flows. In 
process-based analysis, several material flows and their relationships (e. 
g., input and output material flow) are combined to characterize or 
assess a process. Characteristics extracted at the process level include, e. 
g., the indicators yield, screening efficiency, and reduction ratio (cf. Section 
2.1.3.1). 

Characteristics from lower investigation levels (e.g., pixel or particle 
level) are needed to extract characteristics at higher investigation levels 
(e.g., material flow or process level). Taking the determination of 
screening efficiency (Eq. (5)) at the process level as an example, the 
sensor-based assessment may involve four steps: First, pixels may be 
segmented into foreground and background (pixel level). Second, parti
cle sizes and masses of the identified particles may be predicted (particle 
level). Third, particle sizes and masses may be combined into PSDs 
(material flow level). Fourth, PSDs and screen underflow and overflow 
quantities may be combined to compute the screening efficiency (process 
level). The extracted characteristics at different investigation levels can 
then be utilized in applications such as automatic quality control (ma
terial flow level) or adaptive process control (process level). Fig. 1 
summarizes the four SBMC investigation levels and their hierarchical 

interplay. It is important to note that investigation levels can be skipped 
in specific cases; for example, characteristics from the pixel level can be 
directly aggregated at the material flow level (see dotted lines in Fig. 1). 

2.3.2. Machine learning algorithms 
Many tasks in sensor-data analysis for SBMC applications involve 

predicting an unknown characteristic (e.g., material class) from known 
sensor data (e.g., NIR spectra). In ML terminology, the unknown char
acteristic is called target variable y, and the known sensor data is called 
input variable X (Hastie et al., 2009c). In such prediction problems, the 
goal is to develop a mathematical model that predicts the target variable 
y from the input variable X as accurately as possible. 

Supervised ML algorithms can solve such prediction tasks without 
being explicitly programmed by learning relationships between X and y 
from labeled training data, i.e., known input variables and known target 
variables (Marsland, 2014). Trained ML models can then predict un
known target variables from known input variables (Bishop, 2006). 

Two types of supervised ML problems can be distinguished. First, in 
classification problems, the target variable is discrete. Common appli
cations with classification problems are, e.g., the prediction of material 
classes (e.g., “PET”, “PE”, “PP”) or color classes (e.g., “red”, “green”, 
“blue”) from sensor data. Second, in regression problems, the target 
variable is continuous. Common applications with regression problems 
are, e.g., the prediction of material compositions [%], particle sizes 

Table 3 
Available non-destructive, optical sensors for SBMC.  

Sensor technology Wavelength 
range [nm] 

Working principle Pixel-based extractable 
characteristics 

Surface 
technology 

Reference 

from to 

LIF Laser-induced 
fluorescence 

100(a) 380(a) Fluorescence Chemical composition ✓ (Küch and Gaastra, 
2014) 

VIS Visual 380 780 Reflection, absorption Color ✓(b) (Beyerer et al., 2016) 
RAMAN Raman spectroscopy 380(a) 780(a) Raman effect Chemical composition ✓ (Smith and Dent, 2019) 
3DLT 3D laser triangulation – – Reflection +

triangulation 
Height ✓ (Beyerer et al., 2016) 

NIR Near-infrared 
spectroscopy 

780 2,500 Reflection, absorption Chemical composition ✓(c) (Ozaki et al., 2021) 

MIR Mid-infrared spectroscopy 2,500 25,000 Reflection, absorption Chemical composition ✓(c) (Sun, 2009) 
THz Terahertz 104 106 Transmission Chemical composition – (Maul and Nagel, 2014)  

(a) LIF uses monochromatic excitation; the numerical values indicate typical application areas; 
(b) for transparent objects, transmissive measurements are also possible; 
(c) limited penetration depth. 

Fig. 1. SBMC investigation levels.  
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[mm], or moisture contents [%]. (Rebala et al., 2019). 
Different metrics can be used to evaluate the performance of super

vised ML algorithms. For this evaluation, a labeled dataset is divided 
into training and test data. ML algorithms are trained on the training 
dataset, and predictions of the trained algorithms based on the input 
variables of the test set are compared with the ground truth, i.e., the 
known target variables of the test dataset, to determine the prediction 
accuracy. (Kubat, 2017). 

2.3.2.1. Classification metrics. In binary classification problems, y can 
have two values: “positive” (P) and “negative” (N). True (T) and false (F) 
predictions can then be visualized in a 2x2 confusion matrix (Eq. (7)) 
(Marsland, 2014). 

Confusion matrix :
[
TP FP
FN TN

]

(7) 

Based on the confusion matrix, common classification metrics can be 
calculated, including accuracy (Eq. (8)), precision (Eq. (9)), recall (Eq. 
(10)), and F1-score (Eq. (11)). 

accuracy =
#TP+#TN

#TP+#FP+#TN +#FN
(8)  

precision =
#TP

#TP+#FP
(9)  

recall =
#TP

#TP+#FN
(10)  

F1 −score = 2 •
precision • recall
precision+ recall

(11) 

Multi-class classification problems (> 2 classes) can be reformulated 
as a combination of binary classification problems. Calculated binary 
metrics can then be aggregated in terms of macro- or micro-averages. For 
macro-averages, all classes are weighted equally; for micro-averages, 
classes are weighted by the number of instances of each class. (Kubat, 
2017). 

2.3.2.2. Regression metrics. Regression metrics compare true target 
variables yi with their corresponding predictions ̂yi. Common metrics for 
regression problems are the R2-score (Eq. (12)), the mean absolute error 
(MAE) (Eq. (13)), and the root mean square error (RMSE) (Eq. (14)). 
Accurate predictions are indicated both by low MAE and RMSE values 
and R2-scores close to 1. (Fahrmeir et al., 2009; Willmott and Matsuura, 
2005). 

R2 =

∑n
i=1(ŷi −y)2

∑n
i=1(yi −y)2 , with y =

∑n
i=1yi
n

(12)  

MAE =
1
n

∑n

i=1
|ŷi −yi| (13)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(ŷi −yi)2

√

(14)  

3. Material and methods 

To achieve the research objectives outlined in Section 1.3, we con
ducted a systematic literature review. Systematic literature reviews are a 
method for identifying, evaluating and interpreting all available 
research relevant to a particular set of research questions (Kitchenham, 
2007). 

Based on the systematic literature review guidelines of Kitchenham 
(2007), the following steps were taken to conduct the review: formu
lation of research questions (Section 3.1), development of a search 

strategy (Section 3.2), selection of relevant publications (Section 3.3), 
quality assessment of selected publications (Section 3.4), and data 
extraction (Section 3.5). 

3.1. Research questions 

To achieve the research objectives outlined in Section 1.3, the 
following six research questions (RQs) have been formulated: 

RQ 1. Which material flows and material classes have been investi
gated so far, and which material flows have been addressed most 
frequently? 

RQ 2. The prediction of which characteristics has been investigated 
and which investigation levels have been targeted? 

RQ 3. Which optical sensors have been applied for which tasks? 
RQ 4. Which ML algorithms have been applied and which prediction 

accuracies have been achieved? 
RQ 5. Which applications are envisioned based on SBMC methods, 

and at which scales have the investigations occurred? 
RQ 6. How interconnected is SBMC research, and how is the research 

of different SBMC aspects interlinked? 

3.2. Search strategy 

Firstly, an initial literature set was compiled from prior known 
publications and initial searches. Then, based on the initial literature set, 
multiple search strings were developed, tested, and iteratively optimized 
for the full review. Furthermore, systematic forward and backward 
searches were applied to extend the obtained literature set. 

3.2.1. Search strings 
The developed search strings (Table 4) targeted different sensor 

applications (sorting, quality control, characterization, monitoring, 
process control), methods (classification/discrimination), and MFCs 
(material composition, PSD; cf. Section 2.1.3). Depending on the rele
vance for the target, the individual search words either target for the 
title (TITLE) or the title, abstract, and keywords (TITLE-ABS-KEY). Using 
Boolean operators (AND, OR) and wildcard operators (*) ensured that 
different spellings and synonyms were considered. All search strings 
were adapted to the database-specific syntax (Table 4 shows the syntax 
for Scopus as an example). 

3.2.2. Databases 
All search strings were applied to three large, multidisciplinary 

bibliographic databases of three different providers to minimize po
tential biases through database selection and identify as many relevant 
publications as possible. The three selected databases were Scopus 
(Scopus., 2021), Web of Science (Clarivate, 2021), and Google Scholar 
(Google LLC, 2021). All search strings were applied in October 2021. 

3.2.3. Forward and backward searches 
To identify relevant publications that might not be covered by the 

search strings (cf. Table 4), all references of the selected publications 
(backward search) as well as citations of those publications (forward 
search) were included in the review and underwent the selection process 
(Section 3.3). In this way, the review relies not only on the developed 
search strategy but also utilizes the extensive literature searches of each 
of the included publications and overcomes possible limitations of the 
developed search strings. 

3.3. Selection criteria and procedures 

3.3.1. Inclusion criteria 
Of interest for our review are publications on in- or online applica

tions of optical sensor technologies for material flows in dry-mechanical 
recycling processes of non-hazardous wastes. We considered peer- 
reviewed journal articles in the English language published in the time 
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range from 2000 to 2021. The scope was limited to peer-reviewed 
journal articles to ensure a high quality of included manuscripts (Xiao 
and Watson, 2019) and maximum transparency of the search and se
lection process (Kraus et al., 2020). The timeframe 2000 – 2021 was 
chosen as related reviews indicated that most publications on sensor 
technologies in the waste management sector had been published from 
2012 onwards (Sarc et al., 2019), and far older publications are often 
less relevant due to advancements in sensor technologies and ML algo
rithms in recent years (Vrancken et al., 2017; Xia et al., 2021b). 

3.3.2. Exclusion criteria 
Publications on hazardous wastes, biological or chemical treatment 

of wastes, liquid or gaseous wastes (e.g., wastewater or sludges), and 
mining wastes were not considered as these applications address 
significantly other MFCs compared to those relevant for mechanical 
recycling processes (cf. Section 2.1). Similarly, (pre-)treatment of wastes 
for thermal processes, including solid recovered fuel production, are not 
considered, which have been partly reviewed by Vrancken et al. (2017). 
Publications using virgin materials were only considered if an intended 
application for mechanical recycling is outlined in the abstract or title. 

Non-sensor-based characterization methods and methods that 
cannot be directly applied to inline or online characterization are not 
considered as they are not suitable for inline SBMC in sorting and pro
cessing plants (see Section 2). Such methods include (semi-)manual 
methods, non-inline laboratory measurements (e.g., microscopes), sen
sors that strictly require a 1D singulation of the material flow, or manual 
positioning (e.g., handheld devices). 

Furthermore, applications of sensors at the waste segregation or 
collection level were excluded, as the material presented to the sensor 
units in these applications differ from online and inline applications in 
sorting and processing plants (e.g., 1D singulation and material pre
sentation), cf. Section 2.2.2. Applications of sensors for waste 

segregation and collection have, among others, been reviewed by 
Hannan et al. (2015). 

3.3.3. Selection process 
For publications identified by the search strategy (cf. Section 3.2), a 

multi-stage selection process (cf. Fig. 2) was conducted. Firstly, the titles 
of all search results were screened, and publications not meeting the 
selection criteria were excluded. Secondly, the abstract and keywords of 
all non-excluded publications were checked, and publications not 
meeting the selection criteria were further excluded. Thirdly, full copies 
of all non-excluded publications were obtained and checked against the 
inclusion and exclusion criteria. In case of uncertainty, a copy was sent 
to a second reviewer and discussed within the review team. 

Due to the full-text search and lack of filters in Google Scholar, we 
observed a large number of hits for each search string (17,400 – 19,400 
hits per search string, 144,500 hits in total). As Google Scholar sorts the 
search results by relevance and screening all 144,500 titles was practi
cally infeasible, we limited the title screening in Google Scholar to the 
first 300, i.e., the most relevant, results. The limit of 300 publications 
was chosen because (i) we did not find additional publications in our 
scope after screening the first 200 search results, and (ii) we observed a 
similar number of hits for Web of Science and Scopus with the title and 
abstract specific search terms (cf. Fig. 2). 

3.3.4. Included and excluded publications 
In total, n = 11,607 publications were found by applying the eight 

search strings. n = 10,720 publications were excluded during title 
screening. From the remaining n = 887 publications, n = 377 publica
tions were excluded during abstract screening. After removing n = 309 
duplicates (publications that match multiple search strings), a total of n 
= 201 publications were selected for review. Unfortunately, n = 4 of 
these n = 201 publications were unavailable, despite all efforts devoted 
(search all available databases, search journal/publisher page, contact 
corresponding authors directly via ResearchGate and e-mail). n = 108 
publications were considered out of scope during the full review. 
Applying the forward and backward searches revealed another n = 217 
publications after abstract and title screening, of which n = 113 met the 
selection criteria after full review and were included in the review. The 
final dataset obtained n = 198 publications, as summarized in Fig. 2. 

3.4. Quality assessment 

For each publication, a quality assessment (QA) was performed by 
answering the following four QA questions for each included 
publication: 

QA 1. Is the publication an original research article (i.e., did the 
publication conduct an experiment or propose a new method/concept)? 
Yes (1 P), No (0 P). 

QA 2. Did the publication reference related work and contextualize 
the findings within existing research? Yes (1 P), Partly (0.5 P), No (0 P). 

QA 3. Are the applied methods clearly described (e.g., applied sensor 
(s), measurement settings, applied preprocessing techniques and ML 
algorithms)? Yes (1 P), Partly (0.5 P), No (0 P). 

QA 4. Are the results clearly described and discussed (e.g., quanti
tative assessment of achieved prediction results)? Yes (1 P), Partly 
(0.5 P), No (0 P). 

Extensive pre-review discussion ensured a consistent calibration of 
all reviewers. Uncertainties and edge cases were discussed and jointly 
decided within the review team. By summing up the scores of all four QA 
questions, an overall QA score was obtained. The final review consid
ered publications with overall QA scores greater than 3. 

3.5. Data extraction 

To answer the research questions, a data extraction form was 
developed (Table 5), based on which the relevant data was extracted. 

Table 4 
Developed and applied search strings for the systematic literature review; Abbr.: 
Abbreviation.  

Abbr. Target Search string 

Q Quality control TITLE-ABS-KEY(quality AND (product OR assess* 
OR analys* OR control* OR monitor* OR 
assurance)) AND TITLE((waste OR recyc* OR 
recover* OR “post-consumer” OR “post- 
industrial”) AND (sensor* OR *spectr* OR 
imag*)) 

C Characterization TITLE-ABS-KEY(characteri*) AND TITLE((waste 
OR recyc* OR recover* OR “post-consumer” OR 
“post-industrial”) AND (sensor* OR *spectr* OR 
imag*)) 

M Monitoring TITLE-ABS-KEY(monitor*) AND TITLE((waste OR 
recyc* OR recover* OR “post-consumer” OR 
“post-industrial”) AND (sensor* OR *spectr* OR 
imag*)) 

P Process control TITLE-ABS-KEY(“process control“ OR real*time 
OR on*line OR in*line) AND TITLE(waste OR 
recyc* OR ”post-consumer“ OR ”post-industrial“) 

S SBS TITLE-ABS-KEY((sensor*based OR automatic) 
AND (sort* OR separat*)) AND TITLE(waste OR 
recyc* OR “post-consumer” OR “post-industrial”) 

D Classification/ 
discrimination 

TITLE-ABS-KEY(classif* OR discrimi*) AND 
TITLE((waste OR recyc* OR recover* OR “post- 
consumer” OR “post-industrial”) AND (sensor* 
OR *spectr* OR imag*)) 

CO Composition TITLE-ABS-KEY(content OR composition OR 
purity) AND TITLE((waste OR recyc* OR recover* 
OR “post-consumer” OR “post-industrial”) AND 
(sensor* OR *spectr* OR imag*)) 

PS PSD TITLE-ABS-KEY((particle OR grain) AND (size OR 
distribution)) AND TITLE((waste OR recyc* OR 
recover* OR “post-consumer” OR “post- 
industrial”) AND (sensor* OR *spectr* OR 
imag*))  

N. Kroell et al.                                                                                                                                                                                                                                   



Waste Management 149 (2022) 259–290

266

For each publication, a unique identifier was used to connect the 
extracted data to the bibliometric meta-information. Data extraction was 
performed by one reviewer and checked by a second reviewer. Ambi
guities or discrepancies during data extraction were discussed within the 
review team. 

As some authors published two or more independent investigations 
in one publication, while others split such results into multiple publi
cations, a potential weighting bias could occur in subsequent data 
analysis. Furthermore, combining multiple independent investigations 
into one publication complicates data extraction and analysis. To 
minimize such biases and ensure a sophisticated data analysis, we 
decided to split up publications containing multiple independent ex
periments into separate investigations during data extraction and assess 
them independently from each other during data analysis (Section 4). 
Thus, one publication can contain one or multiple investigations. Ex
amples of such publications include, e.g., publications that reported a 
series of investigations for different sensors, material flows, or scales (e. 

g., laboratory experiments followed by scale-up to industrial level) in 
independent experiments. 

4. Results and discussion 

After data extraction, the final obtained dataset contains n = 267 
investigations from n = 198 publications. As a reference for the reader, 
we summarize all publications sorted by applied sensors and investi
gated material flows in Table 6. As shown in Fig. 3a, the number of 
reported investigations increases super-linear from n = 2 investigations 
in 2000 to n = 65 investigations in 2021. More than half of all in
vestigations (155 of 267, 58.1%) were published between 2019 and 
2021. 

4.1. Material flows and classes 

In total, n = 17 different material flows were studied by the 

Fig. 2. Included and excluded publications. SC: Scopus, WoS: Web of Science, GS: Google Scholar; Q, C, M, P, S, D, PS, CO: search string abbreviations introduced 
in Table 4. 
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investigations in our dataset. Table 7 summarizes the investigated ma
terial flows and introduces their abbreviations. 

4.1.1. Investigated material flows 
As shown in Table 7, about a third of all investigations focused on 

plastics (32.6%), followed by WEEE (11.2%), and CDW (10.1%). SBMC 
on public datasets such as TrashNet (Yang and Thung, 2016) and Huawei 
garbage classification challenge cup (Huawei, 2019) was examined by only 
16 of 267 investigations (6.0%); the majority of researchers generated 
the sensor data for the investigation itself. 

As shown in Fig. 3a, the focus of the investigations in our dataset has 
shifted over time. For example, while investigations on publicly avail
able datasets started in 2019 and doubled or more since then, no new 
investigations on the material flow paper have been reported in our 
dataset since 2015. To quantify which material flows have gained or lost 
relative importance, we calculated for each material flow its relative 
frequency among (a) all investigations in the last five years (2016 – 
2021) and (b) the years before (2000 – 2016). By comparing both 
relative frequencies, we observe that investigations on datasets (+9.8 
percentage points [pp] increase in relative frequency), plastics (+5.2 pp) 
and waste in general (+5.2 pp) have gained relative frequency, while 
investigations on paper (-13.3 pp), ASR/ELV (-8.0 pp), and CDW (-6.3 
pp) have lost relative frequency. 

4.1.2. Investigated material classes 
In total, 594 unique material classes (including subgroups such as 

high-density (HD)- and low-density (LD)-PE) and 321 unique material 
groups (after summarizing material classes to material groups, e.g., 
summarizing LDPE and HDPE to PE) have been reported. By analyzing 
the correlation (simultaneous occurrence) between the 20 most 
frequently studied material classes in Fig. 3b, we identify two groups of 
investigations. 

The first group focuses on the classification of different polymers. 

Here, the classification often takes place on the pixel level and based on 
NIR data. The focus of the first group is often on plastic waste streams or 
plastics in other material flows (e.g., LWP or WEEE). Material classes 
frequently investigated by this group are also among the most frequently 
investigated pixel-level material classes (PP, PE, PET, PS, and PVC), see 
Fig. 3c. 

The second group focuses on the discrimination of more general 
waste classes. Here, the classification often takes place at the particle 
level and with deep learning classification models on VIS-RGB data, e.g., 
from public datasets. Material classes frequently investigated by this 
group are also among the most frequently investigated particle-level 
material classes (plastics, paper, glass, metal, and cardboard), which 
correspond to the material classes of TrashNet (Yang and Thung, 2016), 
see Fig. 3d. 

In contrast to the pixel and particle level, significantly less material 
groups are mentioned at the material flow level (Fig. 3e), which is likely 
caused by the few investigations published so far (see Section 4.2.1). 

4.2. Characteristics and investigation levels 

Fig. 4 summarizes the investigated characteristics and investigation 
levels by investigations in our dataset. 

4.2.1. Investigation levels 
As shown in Fig. 4a, investigations in our dataset have so far focused 

almost exclusively at the pixel and particle level with 123 (46.1%) and 
133 of 267 (49.8%) investigations, respectively. Only n = 11 (4.1%) 
investigations addressed the material flow level, and we identified no 
investigations at the process level (cf. Section 2.3.1). For all three 
investigation levels, the number of investigations increases super-linear 
over time (Fig. 4a). Applying the trend analysis of Section 4.1.1 (2000 – 
2015 vs. 2016 – 2021) shows a relative increase of investigations at the 
particle (+5.9 pp) and material flow (+3.4 pp) level compared to a 
relative decrease of investigations at the pixel level (-9.3 pp). 

We assume two main reasons can explain the large discrepancy be
tween the number of investigations at the pixel and particle vs. the 
material flow level. First, precise predictions at the pixel and particle 
level are often needed as a basis for investigations at the material flow 
level (cf. Section 2.3.1 and Fig. 1); thus, investigations at the pixel and 
particle level need to be conducted first. Second, pixel- and particle- 
based analysis finds a broader application than material flow-based 
analysis: As elaborated in Section 2, industrial applications in the past 
three decades have primarily focused on SBS (Feil et al., 2021), which 
requires pixel- and particle-based material classification, while other 
SBMC applications at material flow level have only emerged in recent 
years (see Section 4.4). 

While the increased share of material flow-based investigations 
might indicate an increased research interest in SBMC applications 
beyond SBS, the increased share of particle-based investigations is likely 
caused by an increased application of deep learning classification al
gorithms in recent years (see Section 4.4.1), which are often directly 
applied to images (LeCun et al., 2015), i.e., particles (Kroell et al., 
2021b). 

4.2.2. Investigated characteristics 
Investigations in our dataset almost exclusively focused on iMFCs. 

eMFCs have in our dataset only been investigated by Feil et al. (2019) 
and Curtis et al. (2021) in terms of volume flows and we identified no 
investigations on the determination of mass flows in our dataset. 

Regarding iMFCs, investigations have so far mostly focused on ma
terial classification (207 of 264 investigations, 78.4%). Despite the 
practical relevance of PSDs derived in Section 2.1.3, only n = 3 in
vestigations studied the determination of particle sizes at the particle 
(Hoffmann Sampaio et al., 2021; Kandlbauer et al., 2021) and material 
flow level (Di Maria et al., 2016). 

As shown in Fig. 4c, the variety of investigated characteristics has 

Table 5 
Description of the developed data extraction form for the systematic literature 
review.  

Field Description 

Sensor Type of applied sensor, including multi-sensors (cf. Table 3). 
Investigated 

materials 
List of investigated materials (e.g., [“PET”, “PE”, “PP”]). 

Material flow Material flow from which the investigated sample originated 
(e.g., WEEE or MSW). 

Virgin samples Whether virgin materials were used as sample material (see  
Section 3.3.1). 

Investigation 
method 

Used investigation method (e.g., spectra description, 
classification, sensor-based sorting, material flow 
monitoring). 

Investigation level Whether the investigation was applied at the pixel, particle, 
material flow, or process level (cf. Section 2.3.1). 

Investigation scale Measure for scale and technological readiness level (TRL) 
(International Organization for Standardization, 2013) of the 
investigated technology: 
concept: formulation of (unproven) concepts (TRL 0–2), 
lab scale: basic research and laboratory-scale prototypes (TRL 
2–4), 
industrial-scale: research at an industrial scale or industrial- 
scale prototypes (TRL 5–8), 
plant scale: investigations in plant scale (TRL 6–9). 

Applied ML 
algorithm(s) 

List of applied ML algorithms (excluding non-ML algorithms 
and static [preprocessing] algorithms). 

Best ML algorithm Best performing ML algorithm (highest score on test data). 
Score type Type of score (e.g., accuracy, F1-score, R2-score; cf. Section 

2.3.2). 
Score Score value on test data (aggregated as macro-average; cf. 

Section 2.3.2.1). 
Intended 

application(s) 
List of intended applications from the publication. 

Quality assessment Answers to QA questions, upon which the QA score is 
calculated (cf. Section 3.4).  
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Table 6 
Overview of the 198 publications in scope of the review arranged by applied sensors (columns) and addressed material flows (rows).   

VIS-RGB VIS-HSI VNIR-HSI NIR MIR FTIR thermal RAMAN THz 3DLT multi- 
sensor 

ASR/ELV (Chen et al., 2021b; Li 
et al., 2021b; Wang 
et al., 2019a) 

– (Barnabé et al., 
2015; Serranti 
et al., 2011) 

(Barnabé et al., 2015; 
Serranti et al., 2011; 
Zhao and Chen, 2015) 

– – – – – (Koyanaka 
et al., 2013; 
Koyanaka 
and 
Kobayashi, 
2010) 

(Barnabé 
et al., 
2015) 

CDW (Anding et al., 2013; 
Chen et al., 2021a; 
Davis et al., 2021; Di 
Maria et al., 2016; 
Gokyuu et al., 2011; 
Hoffmann Sampaio 
et al., 2021; Hoong 
et al., 2020; Lu et al., 
2022a; Zhuang et al., 
2019) 

– (Serranti et al., 
2011) 

(Bonifazi et al., 2018b, 
2017, 2015; de Groot 
et al., 2002, 2001; Ku 
et al., 2021; Luciani 
et al., 2015; Serranti 
et al., 2015b; Serranti 
et al., 2012a, 2011; 
Trotta et al., 2021; 
Vegas et al., 2015; Xiao 
et al., 2020; Xiao et al., 
2019a, Xiao et al., 
2019b) 

– – – – – (Ku et al., 
2021; Xiao 
et al., 2020)  

(Ku et al., 
2021; Xiao 
et al., 
2020) 

LWP (Kroell, 2021) – – (Chen et al., 2021f; 
Chen et al., 2021c; 
Chen et al., 2021e; 
Chen et al., 2020; 
Curtis et al., 2021) 

– – – – – (Feil et al., 
2019; Kroell, 
2021) 

(Kroell, 
2021) 

MCW (Kandlbauer et al., 
2021) 

– – (Curtis et al., 2021; 
Möllnitz et al., 2021) 

– – – – – (Curtis et al., 
2021) 

– 

MSW (Bobulski et al., 2021; 
Kiyokawa et al., 2021; 
Li and Chen, 2020; 
Mustaffa et al., 2019; 
Yu et al., 2020; Zhang 
et al., 2019) 

– – (Hryb, 2015; Hu et al., 
2013; Möllnitz et al., 
2021; Serranti et al., 
2015; Serranti et al., 
2012b; Zheng et al., 
2018) 

(Rozenstein et al., 
2017) 

– (Gundupalli 
et al., 
2017b) 

– –  
(Feil et al., 
2019) 

– 

WEEE (Hayashi et al., 2019; 
Lu et al., 2022b) 

Picón et al., 2012; 
Picón et al., 2009) 

(Barnabé et al., 
2015; Candiani 
et al., 2017) 

(Barnabé et al., 2015; 
Beigbeder et al., 2013; 
Bonifazi et al., 2020a; 
Bonifazi et al., 2020b, 
2020c; Candiani et al., 
2017; Palmieri et al., 
2014; Wu et al., 2020)  

(Jacquin et al., 
2021; Signoret 
et al., 2020a; 
Signoret et al., 
2020b; Signoret 
et al., 2019a, 
2019b) 

(Protopapa 
et al., 2021; 
Taurino et al., 
2010) 

(Gundupalli 
et al., 2018) 

(Protopapa 
et al., 2021) 

– – (Barnabé 
et al., 
2015; 
Candiani 
et al., 
2017) 

Glass (Krcmarik et al., 2019) – (Bonifazi and 
Serranti, 2006) 

(Bonifazi and Serranti, 
2006) 

(Serranti et al., 
2006) 

(Farcomeni 
et al., 2008) 

– (de Groot 
et al., 2002) 

– –  
(Bonifazi 
and 
Serranti, 
2006) 

(continued on next page) 
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Table 6 (continued )  

VIS-RGB VIS-HSI VNIR-HSI NIR MIR FTIR thermal RAMAN THz 3DLT multi- 
sensor 

Landfill – – – (Küppers et al., 2019b) – – – – – – – 
Metals (Díaz-Romero et al., 

2021) 
– – – – – – – – (Díaz- 

Romero 
et al., 2021) 

(Díaz- 
Romero 
et al., 
2021) 

Paper (Rahman et al., 2015; 
Rahman et al., 2012a; 
Rahman et al., 2012b; 
Rahman et al., 2011; 
Rahman et al., 2010; 
Rahman et al., 2009; 
Shan et al., 2014) 

(Ramasubramanian 
et al., 2005) 

– (Borel et al., 2007; 
Tatzer et al., 2005) 

– – – – – – – 

Plastics (Fang et al., 2021; 
Küppers et al., 2020; 
Özkan et al., 2015; 
Peršak et al., 2020; 
Ramli et al., 2008; 
Scavino et al., 2009a; 
Scavino et al., 2009b; 
Tachwali et al., 2007; 
Tan et al., 2021; Wang 
et al., 2019b; Zulkifley 
et al., 2014) 

(Arenas-Vivo et al., 
2017; Kuřitka et al., 
2020; Rafi Ahmad, 
2000; Safavi et al., 
2010; Woidasky et al., 
2020) 

(Brunner et al., 
2015; Fomin 
et al., 2017; 
Fomin and 
Kargel, 2019; 
Gruber et al., 
2019; Gruber 
et al., 2018; 
Maris et al., 
2012; Serranti 
et al., 2010; 
Serranti and 
Bonifazi, 2010)  

(Alassali et al., 2018; 
Barcala et al., 2004; 
Bonifazi et al., 2021; 
Bonifazi et al., 2018a; 
Calvini et al., 2018; 
Cucuzza et al., 2021; 
Duan and Li, 2021; 
Galdón-Navarro et al., 
2018; Kulcke et al., 
2003; Küppers et al., 
2021; Küppers et al., 
2019c; Küppers et al., 
2019a; Leitner et al., 
2003; Li et al., 2019; 
Michel et al., 2020; 
Moroni et al., 2015; 
Moroni and Mei, 2020; 
Pieszczek, l., 
Daszykowski, M., , 
2019; Serranti and 
Bonifazi, 2010; 
Tachwali et al., 2007; 
Ulrici et al., 2013; van 
Engelshoven et al., 
2019; Vázquez- 
Guardado et al., 2015; 
Wahab et al., 2006; Xia 
et al., 2021a; Yang 
et al., 2020; Zhu et al., 
2019)  

(Becker et al., 
2017; Kassouf 
et al., 2014; 
Signoret et al., 
2020a,2019a ; 
Vázquez- 
Guardado et al., 
2015; Zinchik 
et al., 2021) 

(Bae et al., 
2019; da Silva 
and Wiebeck, 
2017; Jiang 
et al., 2021; 
Michel et al., 
2020; Roh 
et al., 2018; 
Serranti and 
Bonifazi, 2010) 

– (Bae et al., 
2019; da Silva 
and Wiebeck, 
2017; Roh 
et al., 2017; 
Roh and Oh, 
2016; Serranti 
and Bonifazi, 
2010) 

(Küter 
et al., 
2018) 

– (Serranti 
and 
Bonifazi, 
2010; 
Tachwali 
et al., 
2007) 

Textile (Furferi and Governi, 
2008; Zhou et al., 
2021) 

(Furferi and Governi, 
2008) 

(Blanch-Perez- 
del-Notario 
et al., 2019) 

(Cura et al., 2021; Li 
et al., 2021a; Liu et al., 
2020; Mäkelä et al., 
2020; Zhou et al., 
2019) 

– (Riba et al., 
2020) 

– – – – – 

Waste (Altikat et al., 2022; 
Chen et al., 2021g; 
Fatovatikhah et al., 
2021; Gondal et al., 
2021; Guo et al., 2021; 
Kumar et al., 2021; 

– – (Serranti et al., 2011) – – – – – – – 

(continued on next page) 
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Table 6 (continued )  

VIS-RGB VIS-HSI VNIR-HSI NIR MIR FTIR thermal RAMAN THz 3DLT multi- 
sensor 

Liang and Gu, 2021; 
Ma et al., 2020; 
Masand et al., 2021; 
Pieper et al., 2018; 
Salmador et al., 2008; 
Toğaçar et al., 2020; 
Vo et al., 2019; Wang 
et al., 2020; Zhang 
et al., 2021; Zheng and 
Gu, 2021) 

Wood – – (Kobori et al., 
2008) 

(Jin et al., 2020; 
Kobori et al., 2017; 
Kobori et al., 2008; 
Mauruschat et al., 
2016; So et al., 2004; 
Tsuchikawa et al., 
2003; Tsuchikawa and 
Yamato, 2003) 

– – – – – – (Kobori 
et al., 
2008) 

Dataset (Adedeji and Wang, 
2019; Ahmad et al., 
2020; Fu et al., 2021; 
Huang et al., 2021; 
Huang et al., 2020; 
Mao et al., 2021; 
Masand et al., 2021; 
Melinte et al., 2020; 
Patrizi et al., 2021; Qin 
et al., 2021; Rajak 
et al., 2020; Shi et al., 
2021; Vo et al., 2019; 
Zhang et al., 2021; 
Zheng and Gu, 2021)  

– – – – – – – – – – 

Virgin (Maier et al., 2019; 
Rybarczyk et al., 2020) 

– – – – – – – – – – 

None (Ata et al., 2005; Maier 
et al., 2021) 

– – – – – – – – (Mattone 
et al., 2000) 

–  
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expanded over time, especially over the last five years. Until 2015, re
searchers in our dataset have focused on a total of six different charac
teristics: material identification, i.e., the determination of material 
classes (since 2001), material compositions (since 2004), and material flow 
compositions (since 2011); the identification of tracers (since 2000) and 
colors (since 2005); and image segmentation (since 2000). Starting in 
2016, newer publications widened the scope of investigated character
istics subsequently to PSDs (Di Maria et al., 2016), presentation iMFCs 
(Pieper et al., 2018), mechanical properties (melt viscosity and tensile 
strength) (van Engelshoven et al., 2019), sub material classes (van 
Engelshoven et al., 2019), volume flows (Feil et al., 2019), particle sizes 
(Kandlbauer et al., 2021), particle masses (Kroell et al., 2021a), and 
grasping parameters (Ku et al., 2021). 

When comparing the relative frequency between characteristics for 
material and color identification (material class, material composition, 
material flow composition, color class) and all other characteristics in 2000 
– 2015 vs. 2016 – 2021 (cf. Section 4.1.1), we observe a relative 

decrease of investigations on material and color classification (-9.1 pp) 
and a simultaneous increase of investigations on other characteristics 
(+9.1 pp). 

A likely explanation of the large share of material (as well as color 
and tracer) classification investigations in our dataset is the outstanding 
importance of material and color classification for SBS, to which much 
research has been devoted in recent years (Gundupalli et al., 2017a). In 
contrast, the expansion of the addressed characteristics and the higher 
relative shares of other characteristics indicates a more widened use of 
sensor data for advanced SBS and other SBMC applications. 

4.2.2.1. Investigated characteristics at different investigation levels. As 
shown in Fig. 4b, the investigated characteristics differ per investigation 
level. Publications in our dataset have so far reported four groups of 
characteristics (see braces in Fig. 4b): (i) purely pixel-based, (ii) pixel- or 
particle-based, (iii) purely particle-based, and (iv) purely material-flow- 

Fig. 3. Material flows and material classes. (a) Material flows and total investigations per year; (b) correlation between the 20 most frequent (top 20) material 
classes; (c-e) word clouds (Mueller et al., 2018) of investigated material classes (font size proportional to frequency) on the (c) pixel, (d) particle and (e) material flow 
investigation level. ABS: Acrylonitrile butadiene styrene, HIPS: High Impact PS, PA: Polyamide, PBT: Polybutylene terephthalate, PC: Polycarbonate, PE: Poly
ethylene, PET: Polyethylenterephthalate, PMMA: Polymethylmethacrylate, POM: Polyoxymethylene, PP: Polypropylene, PPS: Polyphenylene sulfide, PS: Polystyrene, 
PVC: Polyvinylchloride, PVDF: Polyvinylidenfluoride, SBR: Styrene-butadiene rubber, TEEE: Thermoplastic elastomer-ether-ester, TPE: Thermoplastic elastomers, 
TPU: Thermoplastic polyurethane, TPU: Thermoplastic polyurethanes; BC: Beverage carton, PPC: Paper, paperboard and cardboard; Al: Aluminium, Au: Gold, Cu: 
Copper, CuZn: Brass, Fe: Iron, Ni: Nickel. 
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based characteristics. 

4.2.2.2. Investigated characteristics for different material flows. While 
material classification has been investigated for all identified material 
flows (except for virgin and none), many other characteristics have so far 
been investigated for only few material flows (Fig. 4d). For example, the 
prediction of particle sizes and PSDs has only been researched for CDW 
and MCW (Di Maria et al., 2016; Hoffmann Sampaio et al., 2021; 
Kandlbauer et al., 2021); particle mass prediction has only been studied 
for LWP waste (Kroell et al., 2021a); mechanical material properties 

have only been predicted for plastics (van Engelshoven et al., 2019) in 
our dataset. The highest number of unique characteristics have been 
investigated for plastics (8 of 16 characteristics, 50.0%). 

4.3. Sensors 

As shown in Fig. 5, ten different optical sensors were applied in total: 
NIR, VIS-RGB, VNIR-HSI, MIR, 3DLT, Fourier-transform infrared spec
troscopy (FTIR), VIS-HSI, RAMAN, THz, and thermal sensors, with the 
VIS-NIR range being addressed most frequently (234 of 282 mentioned 
sensors, 83.0%). Comparing the relative frequency of sensors from 2000 
– 2015 and 2016 – 2021 (cf. Section 4.1.1) shows that especially VIS- 
RGB sensors have been increasingly applied in recent years (+14.6 pp). 

Fig. 5a shows that within the theoretical wavelength ranges of each 
sensor (cf. Table 3), sensors in the investigations were operated at spe
cific wavelength ranges to varying extents: For example, NIR sensors 
theoretically covering the wavelength range from 780 nm to 2500 nm, 
have increasingly been applied in between 1000 nm and 1700 nm, 
which results from the high market share of sensors in a lower wave
length range but at the same time sufficient distinct spectra of commonly 
applied materials. 

Multi-sensors offer the possibility of combining advantages and 
compensating disadvantages of different sensors; however, only 15 of 
267 (5.6%) investigations in our dataset applied multi-sensors. One 
reason for this may be the increased technical effort required to merge 
the data from multiple sensors (early or late sensor fusion). The 15 
multi-sensor investigations have so far focused on the combination of 
NIR, VNIR, 3DLT, and VIS-RGB sensors. 

4.3.1. Applied sensors for different characteristics 
The 16 different characteristics presented in Section 4.2 can be 

abstracted into three distinct tasks: (i) material identification, (ii) 

Table 7 
Overview on investigated material flows.  

Material flow Abbreviation #Investigations % 

Plastics – 87  32.6% 
Waste from electrical and electronic 

equipment 
WEEE 30  11.2% 

Construction and demolition waste CDW 27  10.1% 
Waste (not further specified)  18  6.7% 
Mixed solid waste MSW 17  6.4% 
Dataset – 16  6.0% 
Textile – 15  5.6% 
Automotive shredder residue/end- 

of-life vehicles 
ASR/ELV 11  4.1% 

Paper – 11  4.1% 
Lightweight packaging waste LWP 9  3.4% 
Wood – 8  3.0% 
Glass – 6  2.2% 
Mixed commercial waste MCW 4  1.5% 
None (no material flow addressed) – 3  1.1% 
Landfill – 2  0.7% 
Virgin test material – 2  0.7% 
Metals – 1  0.4%  

∑ 267  100.0%  

Fig. 4. Characteristics and investigation levels. (a) Investigation levels per year; (b) investigated characteristics per material flow, (i) purely pixel-based, (ii) pixel- or 
particle-based, (iii) purely particle-based, (iv) purely material-flow-based characteristics; (c) investigated characteristics (aggregated) per year; (d) investigation 
levels per material flows (see Table 7 for abbreviated material flows). 
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segmentation and measurement, and (iii) prediction of material 
properties. 

4.3.1.1. Material identification. Material identification can be per
formed at the pixel, particle and material flow level. At the pixel level, 
predominantly sensors in the IR range (NIR, MIR, and FTIR) have been 
applied (Fig. 5b). Especially for common plastics and other IR-active 
materials, NIR-based material classification has been developed to 
such an extent that classification accuracies of more than 99% have been 
achieved in many applications (e.g., Duan and Li, 2021; Jin et al., 2020; 
Li et al., 2021a; Palmieri et al., 2014; Zheng et al., 2018). 

Partly for this reason, research interest has shifted to newer classi
fication applications in the NIR wavelength range in recent years. 

Examples for such new applications are the discrimination of LDPE and 
HDPE (Bonifazi et al., 2018a), increasing classification depths (e.g., 
packaging types) (van Engelshoven et al., 2019), investigations of mixed 
NIR spectra such as multilayer plastics (Chen et al., 2021f; Chen et al., 
2020), classification of new materials such as bioplastics (e.g., Chen 
et al., 2021e; Moroni and Mei, 2020), and investigation and prediction 
of aging or degradation processes based on NIR spectra (e.g., Chen et al., 
2021c; Chen et al., 2021e). 

In addition to NIR, fundamental vibrations in the MIR range open 
new sensor-based characterization opportunities. Besides an early study 
by Serranti et al. (2006) focusing an the detection of ceramic glass 
contaminants with MIR, investigations on MIR have been increasingly 
conducted since 2014 (Fig. 5c). In contrast to NIR, most MIR 

Fig. 5. Sensors. (a) Addressed wavelength ranges (kernel density estimation), (i) full optical wavelength range (100 nm −1 mm) in logarithmic scale*, (ii) zoom in 
on VIS-NIR range; (b-f) investigated sensors per (b) investigation level, (c) year, (d) characteristic, (e) material classes (top 20), and (f) material flow. *two THz- 
investigations from (Küter et al., 2018) focus on the lower THz range (84 GHz to 96 GHz) and are not shown in [a] for better readability. 
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investigations (10 of 13, 76.9%) are limited to a pure description of the 
spectra data and classifications based on MIR has so far only been re
ported by Kassouf et al. (2014), Jacquin et al. (2021), and Zinchik et al. 
(2021) with classification accuracies between 92% and 100%. The low 
share of classification investigations based on MIR might be attributed to 
the lower technological maturity of MIR compared to NIR. Furthermore, 
MIR investigations to date have focused almost exclusively on plastic 
identification with the exception of the aforementioned investigation by 
Serranti et al. (2006) (detection of ceramic glass contaminants) and an 
investigation by Rozenstein et al. (2017) (PET, PE, PVC, PP, PLA, PS, 
cardboard, paper, and wood). Moreover, the focus of MIR investigations 
is often on technical polymers or carbon black plastics (cf. Table 6), for 
which the classification based on NIR can be difficult or even technical 
impossible. In addition, advanced material characterization (e.g., 
investigation of aging effects) represents an application field of MIR 
(Signoret et al., 2020b). 

In contrast to the pixel level, VIS-RGB and 3DLT sensors are partic
ularly used at the particle level (cf. Fig. 5b). Two main reasons for the 
increased application of VIS-RGB sensors at the particle level are (i) the 
low investment cost compared to other sensors and (ii) the possibility of 
transferring RGB-based deep learning algorithms (especially CNNs) 
from other research fields (e.g., autonomous driving) to the waste 
management sector. 3DLT sensors, in contrast, can measure the 3D 
shape of particles, which can be used as a feature for the prediction al
gorithm (e.g., Koyanaka et al., 2013; Koyanaka and Kobayashi, 2010; 
Mattone et al., 2000). Another way to identify materials at the particle 
level is to aggregate pixel-based classification results for example by 
majority voting (argmax) or the use of number of pixel-based classifi
cations as a particle-based classification feature (e.g., Bonifazi et al., 
2021; Chen et al., 2021f). This occurs mainly for sensors in IR range and 

VIS sensors; for example, Chen et al. (2021f) has defined a threshold 
(70%) of correct pixel-based classification share as a correct particle 
prediction. 

Like the particle level, classification results from different sensors of 
the pixel and particle level can be aggregated at the material flow level 
(e.g., Curtis et al., 2021; Serranti et al., 2015). Alternatively, direct 
predictions can be made at the material flow level, which have been 
investigated so far with CNNs based on VIS-RGB data by Lu et al. 
(2022a) and Davis et al. (2021). 

4.3.1.2. Segmentation and measurement. A second task involves the 2D 
or 3D measurement of particles and material flows. The starting point 
for all 2D measurements are binary images that divide the sensor data 
into foreground and background at the pixel level. Depending on the 
sensor used, the segmentation can be based on different features, e.g., 
color or brightness from VIS-RGB data (e.g., Maier et al., 2021), intensity 
or dynamics of NIR spectra (e.g., Curtis et al., 2021), or height infor
mation from 3DLT sensors (e.g., Kroell et al., 2021a). Starting point for 
all three-dimensional measurements are 3D heightmaps, for example 
from 3DLT data. 

At the particle level, binary images (2D) or heightmaps (3D) can be 
used to localize or measure individual particles. The localization of 
particles is of high relevance for SBS processes, in order to sort indi
vidual particles using coordinate-precise air pressure bursts (e.g., Maier 
et al., 2021; Pieper et al., 2018) or with mechanical grippers (e.g., Ku 
et al., 2021; Xiao et al., 2020). In addition, 2D and 3D particle di
mensions form the basis for predicting other particle properties such as 
particle size (Kandlbauer et al., 2021) and particle mass (Kroell et al., 
2021a) or can be an (additional) input for material classification (see 
Section 4.3.1.1). 

Table 8 
Overview of investigated ML algorithms.  

Abbr. Algorithm #Investigated #In best Reference 

PCA Principal component analysis 73 24 (Karhunen, 1998) 
CNN Convolutional neural network 47 42 (Lecun et al., 1998) 
PLS Partial least squares 46 37 (Wold et al., 1989) 
kNN k nearest neighbors 36 20 (Altman, 1992) 
SVM Support vector machine 32 17 (Cristianini and Shawe-Taylor, 2013) 
LDA Linear discriminant analysis 28 13 (Tharwat et al., 2017) 
ANN Artificial neural network 25 13 (Wang, 2003) 
DT Decision tree 12 2 (Grajski et al., 1986) 
QDA Quadratic discriminant analysis 10 3 (Hastie et al., 2009b) 
RF Random forest 9 5 (Breiman, 2001) 
Fuzzy Fuzzy based algorithm 7 5 (Perfilieva, 2006) 
SAM Spectral angle mapper 5 2 (Kruse et al., 1993) 
SIMCA Soft independent modelling by class analogy 5 2 (Wold and Sjöström, 1977) 
GMM Gaussian mixture models 4 0 (Figueiredo and Jain, 2002) 
CVA Canonical variate analysis 3 0 (Tofallis, 1999) 
SCC Spectral cross-correlation 2 2 (Koenig, 1999) 
GA Genetic algorithm 2 1 (Holland, 1992) 
BN Bayesian network 2 0 (Holmes and Jain, 2008) 
CBR Case based reasoning 1 1 (Chen et al., 2008) 
CRF Conditional random field 1 1 (Lafferty et al., 2001) 
CT Complementary troubleshooting 1 1 (Xiao et al., 2019a) 
DBC Dissimilarity-based classifier 1 1 (Pekalska and Duin, 2000) 
ICA Independent component analysis 1 1 (Hyvärinen and Oja, 2000) 
MAP Maximum a posteriori estimation 1 1 (Gauvain and Lee, 1994) 
ViT Vision transformer 1 1 (Dosovitskiy et al., 2020) 
DNA computing – 1 0 (Adleman, 1998) 
GPC Gaussian process classifier 1 0 (Rasmussen and Williams, 2008) 
LEMAP Laplacian Eigenmaps 1 0 (Belkin and Niyogi, 2002) 
Linear Linear regression 1 0 (Fahrmeir et al., 2013) 
MLR Multinomial logistic regression 1 0 (Hosmer and Lemeshow, 2000) 
NC Nearest centroid 1 0 (Hastie et al., 2009a) 
RDA Resemblance discriminate analysis 1 0 (Koch, 2014) 
SOM Self-organized map 1 0 (Kohonen, 1998) 
SVD Singular value decomposition 1 0 (Boardman, 1989)  

∑ 368 199   
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At the material flow level, 2D binary images can be used to quantify 
material flows in terms of area flows or occupation densities (e.g., Curtis 
et al., 2021; Küppers et al., 2021; Küppers et al., 2020); whereas 3D(LT) 
measurements allow the determination of volume flows (Curtis et al., 
2021; Feil et al., 2019). 

4.3.1.3. Prediction of material properties. Since material properties such 
as mechanical properties or material colors are usually not influenced by 
particle shapes or sizes, these can be measured directly at the pixel 
level. In our dataset, mechanical properties such as melt viscosity and 
tensile strength have so far only been predicted based on NIR data for 
plastics by van Engelshoven et al. (2019). 

Information on color classes is (obviously) extracted in the VIS 
wavelength range (Fig. 5d). The n = 8 investigations on color classifi
cation in our dataset, predominantly applied VIS-RGB sensors (6 of 8 
investigations, 75.0%), but also VIS-HSI have been applied (2 of 8 in
vestigations, 25.0%). Among the n = 8 color classification in
vestigations, n = 5 investigations (62.5%) conducted classifications at 
the particle level to reduce the influence of, e.g., labels, colored bottle 
caps, or contaminates (Ata et al., 2005; Krcmarik et al., 2019; Tachwali 
et al., 2007; Wang et al., 2019b; Zhou et al., 2021). 

4.3.2. Applied sensors for different material flows and classes 
Fig. 5e shows the application of optical sensors for different material 

classes. As introduced in Section 4.1.2, two groups can be identified: 
Sensors in the IR range (especially NIR) are often applied to plastics (e. 
g., PP, PET, PE, PS), while VIS-RGB sensors find increased applications 
for the broader material classes (glass, paper, metal, cardboard, trash) of 
TrashNet (Yang and Thung, 2016). 

Regarding material flows (Fig. 5f), two effects play a role: First, for 
material identification (Section 4.3.1.1), the application of different 
sensors follows their suitability for identifying different material classes, 
e.g., NIR sensors are often applied for material flows that contain higher 
amounts of polymers (e.g., plastics, LWP, and WEEE), while VIS-RGB 
sensors are often applied for broader material identification (e.g., 
TrashNet) or classification of different paper grades (e.g., “old corru
gated cardboard”, “old newsprint”, or “white paper”), mainly by optical 
characteristics (Rahman et al., 2014). Second, for characteristics based 
on segmentation and measurements (Section 4.3.1.2) the characteriza
tion is independent from the contained material classes. For these 
characteristics, VIS-RGB or 3DLT are often used due to their low in
vestment cost or their ability to perform 3D measurements, respectively. 
Fig. 5f shows a superposition of both effects: While NIR sensors are 
mainly used for plastic-rich material flows, other sensors (e.g. VIS-RGB 
and 3DLT) find a wide range of material flow applications. The selection 
of sensors is therefore not necessarily based at the material flow itself, 
but rather on the characteristics and material classes of interest, as well 
as the suitability of the respective sensors for their combination. 

4.4. ML algorithms 

In our dataset, 204 of 267 (76.4%) investigations studied ML algo
rithms to extract characteristics from the acquired sensor data. For 188 
of 204 (92.2%) investigations, details on the studied ML algorithm(s) 
were given, which are the focus of this section (hereinafter referred to as 
ML investigations). 

Table 8 summarizes the 34 unique ML algorithms investigated by ML 
investigations in our dataset, introduces their abbreviations, and gives 
reference to further details for each ML algorithm. In addition, four in
vestigations developed custom ML algorithms, i.e., ML algorithms that 
were developed for the investigation itself (Di Maria et al., 2016; 
Koyanaka and Kobayashi, 2010; Li et al., 2019; Zhang et al., 2019). 
Among all investigated ML algorithms, PCA (n = 73 investigations), 
CNN (n = 47), PLS (n = 46), kNN (n = 36), and SVM (n = 32) were 
studied most often. 

Furthermore, 45 of 319 (14.1%) studied algorithms were ensembles 
of multiple algorithms (e.g., PCA + PLS). Most ensembles composed two 
algorithms (42 of 45 ensembles, 93.3%) and combined PCA as a pre
processing step with other ML algorithms (37 of 45, 82.2%). 

Fig. 6 gives an overview of ML algorithms investigated more than 
once. As shown in Fig. 6a, the frequency at which different ML algo
rithms were applied has changed over the years. While some algorithms 
(e.g., ANN and LDA) have been studied since the early 2000s, other 
algorithms (e.g., SVM and RF) have been investigated since 2013. 
Especially for CNNs, which were studied since 2018 by investigations in 
our datasets, a steep increase in the number of investigations (2.5-fold 
increase or more per year) can be observed. 

4.4.1. Investigated ML algorithms for different prediction tasks 
Each prediction task can be broken down into (i) a sensor that defines 

the input to the ML algorithm, as well as (ii) an investigation level and 
(iii) a characteristic that define the model output. 

4.4.1.1. Investigated ML algorithms for different sensors. As shown in 
Fig. 6c, most ML algorithms have been applied to data from various 
sensors. However, while CNN (37 of 43 CNN investigations, 86.0%), 
kNN (15 of 34, 44.1%), and SVM (14 of 28, 50.0%) algorithms were 
most frequently applied to data from VIS-RGB sensors, PCA (38 of 53, 
71.7%) and PLS (40 of 45, 88.9%) algorithms were most frequently 
applied to NIR data, which might be traced back to their dimensionality 
reduction capability for highly correlated spectral data. 

4.4.1.2. Investigated ML algorithms for different investigation levels. From 
34 unique ML algorithms, 23 and 25 algorithms have been investigated 
on the pixel and particle level, respectively (see Fig. 6b). Since PCA and 
PLS are capable of dimensionality reduction, they have been often 
applied on the pixel level (48 of 58 [82.8%] and 39 of 45 investigations 
[86.7%], respectively), e.g., to process high-dimensional data from 
hyperspectral sensors such as NIR sensors. In contrast, CNNs have found 
increased application on the particle level (39 of 46, 84.8%) due to their 
suitability for image classification. On the material flow level, re
searchers have so far applied CNNs (Davis et al., 2021; Lu et al., 2022a), 
ensembles of CNNs and SVMs (Chen et al., 2021a), and custom algo
rithms (Di Maria et al., 2016). 

4.4.1.3. Investigated ML algorithms for different characteristics. Although 
most ML algorithms are suitable for a wide range of predictions (Mars
land, 2014), Fig. 6d shows that most algorithms have so far been applied 
to material classification, which can be attributed to the high number of 
material classification investigations (cf. Section 4.2). Besides material 
identification, ML algorithms have only been investigated in occasional 
case studies for other characteristics. In fact, of n = 288 possible 
algorithm-characteristic combinations, only n = 46 (16.0%) have been 
investigated. 

4.4.2. ML prediction scores 
In total, 167 of 188 (88.8%) ML investigations in our dataset re

ported the achieved test score of the best-performing ML algorithm. As 
depicted in Fig. 6f, the reported test scores range from 49.1% to 100.0%. 
133 of 167 (79.6%) ML investigations report test scores of 90% or 
higher. On average, higher best test scores are reported on the pixel level 
(mean: 95.4%) compared to the particle level (mean: 91.3%). Only three 
investigations reported test scores on the material flow level (68.4% −
94.0%), which do not allow further statements due to the small sample 
size. 

When analyzing the development of test scores over time (Fig. 6e), 
for both the pixel (p = 0.048) and particle level (p = 0.015), a slight 
increase of the reported test scores can be observed. At the pixel level, 
reported test scores increased about 0.21% per year; at the particle level, 
test scores increased steeper with about 0.41% per year. 
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Fig. 6. Investigated ML algorithms* (a) per year, (b) per investigation level, (c) per sensor, and (d) per characteristic; (e) test scores of best-performing ML algo
rithms per year and investigation level; (f) test scores per investigation level; (g) Elo rating and test scores of best-performing ML algorithm combinations per 
investigation. *for better readability, only ML algorithms investigated more than once are depicted (see Table 8 for frequency and abbreviations). 
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However, these results must be interpreted with great caution as 
several biases could distort the reported test scores. For example, (i) 
researchers are incentivized to publish only sufficient test scores (pub
lication bias); (ii) most predictions are based on different datasets and 
are therefore only comparable to a very limited extent (if at all); (iii) 
different types of test scores (e.g., accuracy and R2-score) cannot be 
directly compared; and (iv) different investigations may use different 
implementations and hyperparameter settings. 

From 34 investigated ML algorithms, 22 algorithms of the were re
ported once or more as the best-performing ML algorithm or as part of a 
best-performing ML ensemble (cf. Table 8). Among the best-performing 
ML algorithms, CNN (n = 42), PLS (n = 37), PCA (n = 24), kNN (n = 20), 
and SVM (n = 17) algorithms were most often reported. 

However, the frequency at which ML algorithms are reported as the 
best performing ML algorithms is not sufficient to draw conclusions 
about the suitability of different ML algorithms for SBMC. First, ML al
gorithms studied more often have a higher probability of being the best- 
performing ML algorithm (cf. Table 8). Second, ML algorithms, which 
are less often compared to other ML algorithms, have a higher proba
bility of being reported as the best-performing ML algorithm. 

To overcome these limitations, we propose an alternative method to 
assess the suitability of different ML algorithms for SBMC: The Elo rating 
system (Elo, 2008), which is a method to calculate relative skill levels of 
different players that is used in zero-sum games such as chess and 
football. 

In our Elo implementation, we model each investigation as pairwise 
matches between the tested ML algorithms and the best-performing ML 
algorithm within each investigation. All algorithms start with an initial 
Elo rating of 1,000. After each match, the winning algorithm takes 
points from the losing algorithm, and both Elo ratings are updated. The 
transferred points after each match are based on the difference between 
both Elo ratings, which makes the rating system self-correcting. If a 
higher-rated algorithm wins a match against a lower-rated algorithm, 
fewer points will be transferred compared to a match in which a lower- 
rated algorithm wins against a higher-rated algorithm since a win in the 
first case is more likely than in the second case (Elo, 2008). Therefore, 

ML algorithms of higher suitability will achieve higher Elo ratings than 
algorithms of lower suitability. 

Fig. 6g summarizes the Elo ratings and the achieved test scores of the 
25 different ML algorithms (ensembles) that were reported as best- 
performing ML algorithms (ensembles) by the investigations in our 
dataset (excluding PCA2). As a result, we observe high Elo ratings for 
CNN (Elo-score: 1153.1, 14 [matches won]: 1 [match lost]) and RF 
(1132.0, 17:4). In contrast, low Elo ratings are observed for PLS (935.8, 
0:5), DT (928.0, 3:9), and kNN (922.4, 7:14). 

In conclusion, the calculated Elo ratings indicate a high suitability of 
CNN and RF algorithms for SBMC and confirm the observed out
performance of CNN in comparison to other traditional ML algorithms 
observed in other research fields. However, these results must be 
interpreted with great caution, as outlined above and in Section 4.7. 

4.5. Applications and investigation scales 

Fig. 7 summarizes the envisioned applications by investigations in 
our dataset and the scales at which the investigations were conducted. 

4.5.1. Envisioned applications 
In total, we identified six different applications envisioned by the 

publications in our dataset. Table 9 defines the envisioned applications 
and introduces their abbreviations. 

As shown in Fig. 7a, SBS applications have been mentioned since the 
beginning of the period under review (2000 – 2021) and by the majority 
of investigations (cf. Table 9). Starting in 2003, the first investigations 
on PRED applications were published followed by SBMM (2008), SBQC 
(2011), and SBPM/C applications (2012). When comparing the relative 
share of applications mentioned between 2011 – 2021 (last ten years) 
and 2000 – 2011 (cf. Section 4.1.1), we observe that SBMC research has 
been expanding from SBS applications (-18.6 pp) towards SBQC (+9.7 
pp), PRED (+3.6 pp), SBPM/C (+3.1 pp), and SBMM (+2.3 pp) in recent 
years. 

Fig. 7c indicates that the identified applications can be clustered into 
three groups: (i) SBS; (ii) PRED; and (iii) SBMM, SBQC, and SBPM/C. 

Fig. 7. Applications and investigation scales. (a) Applications per year; (b) investigation scales per year; (c) correlation (simultaneous occurrence) between different 
applications; (d) applications for different sensors; (e) investigation scales per sensor. PCC: Pearson correlation coefficient. 

2 Note that we chose to exclude the PCA algorithm from our Elo evaluation 
because PCA is commonly used for explanatory data analysis or preprocessing 
(high frequency among investigated ML algorithms), but has less application in 
final model prediction (low frequency among the best-performing ML algo
rithms), which would systematically bias the Elo evaluation towards other 
algorithms. 
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While applications that require data analysis on the material flow level 
(SBMM, SBQC, or SBPM/C) are positively correlated with each other, 
SBS and PRED applications tend to be envisioned independently, which 
might be traced back to different researchers targeting for different 
applications. 

As shown in Fig. 7d, the envisioned applications differ significantly 
in terms of investigated sensors. While NIR-sensors find more frequent 
applications in SBS (n = 83 mentions on NIR vs. n = 45 mentions on VIS- 
RGB [1.84:1]), VIS-RGB sensors are more frequently investigated for 
PRED applications (n = 22 mentions on NIR vs. n = 35 mentions on VIS- 

Table 9 
Overview and definition of envisioned applications by the publications in our dataset; *SBPC or SBMM*.  

Abbr. Name Description Target level Example #Mentions Mention 
share 

PRED Prediction Prediction of material or material flow characteristics 
from sensor measurements.   

Pixel, particle, 
material flow 

Classification of polymers based on 
NIR spectra. 

81  30.3% 

SBS Sensor-based 
sorting 

Particle-wise sorting of material flows based on predicted 
characteristics from sensor measurements through 
actuators.   

Particle Sorting PET bottles out of LWP waste. 174  65.2% 

SBMM Sensor-based 
material flow 
monitoring 

Sensor-based measurement of MFCs through SBMC over a 
period of time and evaluation of measured MFCs or 
comparison with a target or reference value.    

Material flow Sensor-based monitoring of the input 
material composition in a sorting 
plant. 

13  4.9% 

SBQC Sensor-based 
quality control 

Comparison of MFCs acquired through SBMC with 
predefined quality criteria. 

Material flow Sensor-based monitoring of the 
purity of preconcentrates in a sorting 
plant.  

25  9.4% 

SBPM Sensor-based 
process monitoring 

Monitoring of characteristics or indicators acquired 
through SBMC at the process level. 

Process Sensor-based monitoring the 
screening efficiency of a drum screen.   

8*  3.0%* 

SBPC Sensor-based 
process control 

Adjustment of actuators based on characteristics or 
indicators through SBMC at the process level. 

Process Setting the shaft speed of a pre- 
shredder based on the measured 
output volume flow. 

8*  3.0%*  

* During data extraction, we observed that it is difficult to identify if authors intended an SBPM or SBPC application (since both applications require similar 
technological prerequisites), which we thus unified to SBPM or SBPC (abbreviated as SBPM/C) in the following. 

Fig. 8. Citation network between the 198 publications in our dataset colored by (a) applied sensors and (b) addressed material flows. Vertices: publications, edges: 
citations, pie: relative frequency of respective among a publication, vertex size: #citations among the 198 publications in our dataset. 
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RGB [0.63:1]). 

4.5.2. Investigation scales 
As shown in Fig. 7b, most investigations in our dataset were con

ducted on laboratory scale (242 of 267 investigations, 90.6%), followed 
by investigations on technical (n = 18, 6.7%) and plant scale (n = 3, 
1.1%). In addition, n = 4 investigations (1.5%) were classified as novel 
concepts (Feil et al., 2019; Salmador et al., 2008; Serranti et al., 2011; 
Wu et al., 2020). 

Besides an early investigation by de Groot et al. (2002), in
vestigations on a technical scale in our dataset have been reported 
frequently since 2013 (Beigbeder et al., 2013). Comparing the relative 
shares of different investigation scales between 2000 – 2015 and 2016 – 
2021 (cf. Section 4.1.1) shows an increasing trend towards higher TRL 
levels in recent years: While the relative frequency of concepts (-2.1 pp) 
and investigations on lab-scale (-4.1 pp) decreased, more investigations 
were published on a technical (+4.7 pp) and plant scale (+1.4 pp). 

As shown in Fig. 7e, all ten optical sensors in our dataset have been 
studied extensively on the laboratory scale. On a technical scale, how
ever, the investigated sensors in our dataset reduces to NIR (n = 11), VIS- 
RGB (n = 5 investigations), 3DLT (n = 2), MIR (n = 1), THz (n = 1), and 
multi-sensors (n = 2). Moreover, investigated sensors at the plant level 
are currently limited to NIR (Curtis et al., 2021) and 3DLT (Curtis et al., 
2021; Feil et al., 2019). 

In summary, we observe that most reviewed investigations have 
taken place at the laboratory scale, which can be explained mainly by 
the type of reviewed literature (peer-reviewed journal articles). How
ever, researchers have made significant efforts towards upscaling to 
plant scale. While SBS with many sensors is already state-of-the-art 
(Chen et al., 2021d; Gundupalli et al., 2017a; Sarc et al., 2019), SBMC 
methods rapidly evolve towards plant scale maturity. So far, NIR and 
3DLT have been proven to be suitable for SBMM at plant scale (Curtis 
and Sarc, 2021; Feil et al., 2019). 

4.6. Collaboration and networks 

To determine how interconnected research on SBMC is (RQ 6), we 
evaluate two types of connections in the following subsections: Citation 
networks (Section 4.6.1) and co-authorship networks (Section 4.6.2). 
Both connections will be visualized as graphs. In the citation network, 
the modeled graph consists of publications (vertices) and citations 
(edges) between them. In the co-authorship network, the modeled graph 
consists of authors (vertices) and co-authorships (edges) between them. 

For visualizing both graphs, we will determine the vertex positions 
through the force-based graph drawing algorithm of Hu (2005), imple
mented in graph-tool (Peixoto, 2014). In force-based graph drawing, the 
edges are modeled as mechanical springs that pull connected vertices 
together, while repulsive electrical forces of the vertices push vertices 
away from each other. Vertex positions are initialized randomly and 
then iteratively updated to minimize the system’s energy until an 
equilibrium is reached. In this way, more connected vertices are closer 
together in the final graph than other vertices, enabling us to identify 
relationships between different publications and authors visually. 

4.6.1. Citation networks 
Fig. 8 shows the resulting citation network of the 198 publications in 

our dataset. To interpret the resulting graph, all vertices (publications) 
are visualized as pie charts with the different sensors (Fig. 8a) and 
material flows (Fig. 8b) of the underlying investigations defining their 
color and share (e.g., a publication containing one NIR and one VIS-RGB 
investigation would result in a 50% NIR and 50% VIS-RGB pie). 

In total, we identified n = 497 citations among the 198 publications 
in our dataset. On average, publications in our dataset cited/got cited 
from n = 2.5 other publications from our dataset. The three most cited 
vertices within our dataset are Serranti et al. (2011) [n = 23], Ulrici et al. 
(2013) [n = 18], and Serranti et al. (2012a) [n = 17]. 

The majority of publications (174 of 198, 87.9%) belong to a large 
subgraph (shown in the center of Fig. 8a and b), which contains 98.2% 

Fig. 9. Co-Authorship Network of the 611 authors from 198 publications in our dataset. (N1) largest and (N2) second-largest co-authorship subnet (for clarity, only 
authors with two or more total publications are shown in N1 and N2). 
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(n = 488) of all citations. When we calculate the shortest paths between 
all publications within this subgraph (considering both citations and 
references), we observe that it takes, on average, 2.7 intermediate 
publications to reach any target publication from any source publication 
(min: 0, median: 3, maximum: 7), which indicates a strong intercon
nection of this subgraph. In contrast, we identify 15 subgraphs isolated 
from the main subgraph containing between n = 1 and n = 5 publica
tions each (shown at the borders of Fig. 8). 

When analyzing both colored citation graphs, we observe that pub
lications with similar sensors (Fig. 8a) or material flows (Fig. 8b) often 
cite each other and are thus located closer to each other. Five broader 
clusters can be identified that are closely connected to the main citation 
network: publications that focus on the material flows plastics and MSW 
and apply NIR sensors (C1), publications on plastics and WEEE with MIR 
sensors (C2), NIR publications on LWP (C3), VIS-RGB publications on 
public available datasets or waste classification in general (C4), and 
mostly NIR publications on CDW and glass (C5). In contrast, publica
tions on paper based on VIS sensors (C6), NIR and FTIR publications on 
textile (C7), material-independent publications (C8), and investigations 
on wood (C9a, C9b) are less connected to the main citation subgraph. 

In accordance with the findings of Section 4.3, we see that the (main) 
citation network is largely dominated by two research communities 
focusing (a) on the application of NIR (and MIR) sensors for a more 
nuanced identification of (mostly) plastics (C1, C2) and (b) the appli
cation of CNNs for more general waste classification especially on public 
datasets. 

4.6.2. Co-authorship networks 
Fig. 9 shows the co-authorship graph, in which vertices are colored 

based on the envisioned applications. In total, the co-authorship graph 
contains n = 611 different authors (vertices) and n = 2,472 co- 
authorships (edges). In contrast, to the citation network, the co- 
authorships network is significantly less connected with n = 111 co- 
authorship networks in total, ranging from n = 1 to n = 33 authors 
per group (mean: n = 5.5). 

As shown in Fig. 9, the largest co-authorship network (N1) in our 
dataset contains a total of n = 33 authors (for clarity, only authors with 
two or more total publications are shown in the detailed views of Fig. 9), 
which can be traced back to researchers from the RWTH Aachen Uni
versity (Germany) and Montanuniversitaet Leoben (Austria). Fig. 9.N2 
shows the second-largest co-authorship network (N2) with n = 28 au
thors, which can be traced back to researchers from the Sapienza Uni
versity of Rome (Italy). 

In summary, two main conclusions can be drawn from Section 4.6. 
First, individual co-authorship networks are often focused on a limited 
number of applications. Second, despite extensive citation within our 
dataset (Fig. 8), research collaboration often ends at the boundaries of 
single or a few universities or research groups (Fig. 9). Therefore, 
research across university and research group boundaries has likely the 
potential to provide new impulses for SBMC research. Readers may find 
related researchers by the overview given in Table 6. 

4.7. Limitations 

Despite all efforts devoted, this study has three major limitations. 
First, as the review has focused on peer-reviewed journal articles in the 
English language, non-peer-reviewed publications such as conference 
proceedings and non-english literature have not been included, which 
may add systematic errors to the obtained findings. For example, most 
recent findings from conference publications as well as industrial 
research results are not represented in the review, which may result in 
an underestimation of the state-of-research or reached TRL levels. Here, 
a systematic literature review on non-peer-reviewed and/or non-English 
language literature could complement the present study. 

Second, the focus of this review was on dry-mechanical recycling of 
non-hazardous waste streams. However, it is likely that sensor-based 
characterization methods already exist for virgin materials or hazard
ous wastes that could be transferred to the waste management sector. 
Here, an additional review focusing on transfer from other industries 
(with more advanced levels of digitalization) could be of great value. 

Fig. 10. SBMC data processing pipeline and future research potentials. Research potentials 1–10 (in circles): Future research potentials as outlined in Section 5 
(Research potential i corresponds to Section 5.i). 
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Third, although our ML algorithm comparison based on Elo ratings 
ensures that only algorithms on the same datasets and for the same tasks 
are compared, several effects could still distort the comparison. (i) The 
fact that each investigation makes a pre-selection of algorithms to be 
investigated could lead to systematic biases, e.g., a better performing 
algorithm might exist but was not considered in the respective study. (ii) 
The Elo rating does not consider how large the prediction difference is 
between individual algorithms. Especially in the case of very small dif
ferences, random effects (e.g., splitting of training and test data) can 
impact on the comparison. (iii) The algorithm comparison may be 
affected by different implementations or hyperparameter optimizations 
among the respective investigations. (iv) It should be noted that our Elo 
implementation compares ML algorithms across different prediction 
tasks within our dataset and does not , e.g., differenciate between clas
sification and regression tasks. Thus, it is still possible that despite an 
overall low Elo rating, certain algorithms are better suited for certain 
tasks than algorithms with overall higher Elo ratings. Therefore, our 
evaluations only provide evidence for particularly well-suited SBMC 
algorithms, but do not replace a direct algorithm comparison in primary 
studies. 

5. Future research potentials 

Based on the obtained overview of existing SBMC publications and 
existing SBMC methods in Section 4, several future research potentials 
can be derived. In Fig. 10, we integrate the insights from Section 4 into 
an SBMC data processing pipeline that illustrates how data from 
different sensors can be used to extract characteristics at different 
investigation levels and what applications emerge from these charac
teristics. Using the framework provided by Fig. 10, we identify n = 10 
future research opportunities, which we discuss in more detail in the 
following subsections (one potential per section; Section 5.i referrers to 
research potential i in Fig. 10). 

5.1. Utilizing low-cost sensors 

Modern sorting plants often produce ten or more output material 
flows; several dozen material flows are often conveyed between indi
vidual separation units inside the plant. To realize the research vision of 
automated and adaptive process control in next-generation sorting 
plants (Section 1.1), it is likely that a significant part of these material 
flows has to be monitored by SBMC methods in the future to obtain a full 
picture of the process state and enable a precise process control for 
optimal sorting results. Many existing sensor technologies have rather 
high unit costs, making exhaustive process monitoring economically 
unfeasible. 

Possible strategies to reduce these investments costs comprise (i) the 
use of existing sensors (see Section 5.4), (ii) positioning additional 
sensors at strategically useful locations, and (iii) reducing the in
vestments cost per sensor. Regarding reducing the investment cost of 
sensors for eMFCs (especially volume flows), we see large potential in 
light detection and ranging (LIDAR) sensors, which could measure vol
ume flows at a significantly lower cost compared to state-of-the-art 3DLT 
sensors (Nordmann and Pfund, 2020). Regarding iMFCs, we see great 
potential in VIS-RGB sensors, which could substitute 3DLT sensors 
where 2D particle measurements are sufficient (e.g., Kandlbauer et al., 
2021) or other sensors when combined with advanced ML algorithms 
such as CNNs (e.g., Chen et al., 2021a; Davis et al., 2021; Lu et al., 
2022a). 

5.2. Upscaling and utilization of emerging sensor technologies 

In addition, potential improvements could be achieved by further 
upscaling emerging optical sensor technologies such as THz and MIR, 
which have proven to solve intractable problems such as sorting carbon- 
black plastics in the past (e.g., Küter et al., 2018; Rozenstein et al., 2017; 

Signoret et al., 2020a, Signoret et al., 2019a, Signoret et al., 2019b). For 
example, a more detailed characterization with MIR sensors could 
enable the identification of specific plastic additives, the prediction of 
application-specific material properties of post-consumer recyclates 
(van Engelshoven et al., 2019), or quantify aging effects (Signoret et al., 
2020b), which can be challenging in the NIR range (e.g., Chen et al., 
2021c). 

These predicted characteristics could be utilized in advanced SBS 
and SBQC and contribute to higher-quality material recycling (e.g., 
additives like flame retardants could damage the quality of the plastic 
recyclate). As these emerging sensor technologies have so far predomi
nantly been applied to plastics, the extension to other use cases such as 
the discrimination of different waste wood categories, a more nuanced 
paper sorting, or SBS in CDW recycling could contribute further to an 
improved material circulation. 

5.3. Improvement of 3D(LT) detection 

As discussed in Section 4.3.1, 3D sensors are of great value for 
measuring volume flows (3DLT and LIDAR) and individual particles 
(3DLT) in SBMC. However, many problems in applying 3DLT sensors for 
SBMC are still under-researched. For example, many post-consumer 
material flows contain transparent materials such as PET bottles or 
glass, which can only be detected to a limited extent using 3DLT because 
the laser beam (depending on transparency and surface contamination) 
penetrates the transparent material and cannot be measured at the 
particle’s surface. Regarding volumetric flow measurement, 3DLT and 
LIDAR sensors often overestimate or underestimate the volumetric flow 
through cavities or overshadowing, respectively, or it is unclear how the 
“true” volumetric flow is even defined in such cases. 

5.4. Utilization of existing sensor equipment and data streams 

As mentioned under Section 5.1, there is great potential in using 
existing sensor data in sorting plants. Many modern sorting plants 
contain several SBS units. Since the material flow on the acceleration 
belts/chutes of existing SBS equipment is presented as a singled mono
layer, and the existing sensors classify the material flow, either way, the 
use of sensor data from existing SBS units offers great potential for 
material flow monitoring. SBS manufacturers are already recording this 
data and making it available to their customers (e.g., TOMRA Systems 
ASA., 2022a). However, challenges in this area are mainly of a technical 
and organizational nature. Since the data is primarily used for SBS, 
material flow information (e.g., area-related material flow composi
tions) is usually stored in an aggregated form and cannot be evaluated 
and used in more detail for other SBMC applications. In addition, sensor 
data often have material-specific weights, and individual reference 
spectra are stored for the sorting recipe, which can be very different if 
they are saved desirably for, e.g., SBMM applications. Besides, recipes 
often change over time (due to SBS unit maintenance), complicating the 
data analysis. A simple technical solution would be to split the sensor 
data stream into an SBS and an SBMM data stream immediately after 
acquisition so that the sensor data can be analyzed at high resolution 
without affecting the actual sorting task (and vice versa). 

5.5. Open-access datasets and further utilization of deep learning methods 

CNNs have so far achieved impressive classification results on VIS- 
RGB datasets of post-consumer wastes (e.g., TrashNet [Yang and 
Thung, 2016] and Huawei garbage classification challenge cup [Huawei, 
2019]; see Section 4.4.2). However, the public datasets available are 
quite different from the reality in many industrial sorting plants. For 
example, in sorting plants, particles usually must be identified on (dirty) 
conveyor belts, whereas the particles in, e.g., TrashNet were created in 
front of mostly homogeneous, white, and clean backgrounds. In addi
tion, waste collection and preconditioning particles in sorting plants are 
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often covered with dust, ash, or dirt, exist as agglomerates with other 
materials, or are often heavily deformed or partially damaged by waste 
collection or preconditioning processes. Additionally, modern sorting 
plants often sort according to other and more nuanced material classes 
than the ones used in TrashNet. 

ML researchers could largely profit from open-access datasets of 
post-consumer or post-industrial waste closer to real-world sorting 
plants’ reality. Open access could help exploit datasets once generated 
through elaborate labeling more intensively by many researchers. For 
example, Lu et al. (2022a) report that it took n = 10 annotators “a month 
of hard work” (Lu et al., 2022a, p. 4) to label their dataset of n = 5,022 
images for semantic segmentation, yet, the dataset has only been 
investigated by the authors themselves. 

Furthermore, CNNs could be applied to predict other characteristics 
such as particle sizes and masses, as stated earlier (Kroell et al., 2021a). 
To date, the prediction of particle sizes and masses has been mostly 
conducted on manually engineered particle features (e.g., Kroell, 2021), 
which might not be optimal for the given prediction task. Here, CNNs 
could be of great value since the extracted features are learned by the 
model itself and might thus be adapted better to the specific prediction 
task. Since CNNs can be trained on any type of data array, CNNs could be 
applied to other types of sensor data at the pixel and particle level. First 
investigations following this approach have already presented prom
ising results (e.g., Gruber et al., 2019; Jiang et al., 2021; Liu et al., 2020; 
Xia et al., 2021a; Zinchik et al., 2021). Especially transfer learning 
techniques (Alom et al., 2019) could help to utilize existing CNNs 
models for SBMC applications. 

5.6. Development and demonstration of sensor-based characterization 
methods at the material flow level 

As discussed in Section 4.2, characteristics have so far been predicted 
only occasionally at the material flow level. Several research gaps need 
to be overcome to enable a reliable extraction of iMFCs. 

First, all existing optical sensors create area- or volume-based mea
surements. As elaborated detailed in (Kroell et al., 2021a), most appli
cations in waste management require mass-based MFCs. Therefore, a 
transformation of the area- or volume-based sensor measurements into 
mass-based MFCs is necessary, which so far has been researched only 
briefly for a limited set of material flows (Krämer, 2017; Kroell et al., 
2021a; Serranti et al., 2015; Weissenbach and Sarc, 2022; Weissenbach 
and Sarc, 2021). 

Second, outside SBS units, material flows in sorting and processing 
plants are often not transported as a singled monolayer (Fig. 11a) but as 
multilayered bulks (Fig. 11b) with materials touching or overlapping 
each other. When particle-based characteristics (e.g., PSDs) shall be 
determined in such an unfavorable material flow presentation, adapted 
segmentation algorithms need to be developed first. Here, we see great 
potential in the application of semantic instance segmentation algo
rithms based on deep learning such as U-Net (Ronneberger et al., 2015), 

Mask R-CNN (He et al., 2017) and DeepLabv3+ (Chen et al., 2018). 
Pixel-based derivable characteristics such as the material flow compo
sition can be derived by analyzing the surface of the investigated ma
terial bulk (e.g., Curtis and Sarc, 2021). However, segregation errors, e. 
g., through granular convection (“Brazil nut effect”) (Rosato and Prinz, 
1987) (Fig. 11b) or different material densities, might result in high 
uncertainties when only considering the bulk surface. Here, extensive 
research is required to understand and quantify these effects on SBMC at 
the material flow level. 

Third, little research has been conducted regarding the measurement 
of volume flows (see Section 5.3) and the transformation of volume to 
mass flows (Curtis and Sarc, 2021). Likewise, significant research gaps 
exist in the prediction of PSDs on conveyor belts (cf. Section 4.2). 

Fourth, there is no consensus at which time intervals SBMM data 
should be aggregated or smoothed and how material flow fluctuations 
should be quantified best (Curtis et al., 2021; Feil et al., 2019). While 
there are rather clear prediction metrics on the pixel and particle level 
(see Section 2.3.2), first investigations on the targeting on a prediction of 
iMFCs show that there are yet no clear metrics to assess the prediction 
performance on the material flow level (e.g., Kandlbauer et al., 2021). 

5.7. Development and demonstration of sensor-based characterization 
methods at the process level 

As discussed in Section 4.2.1, we have not identified peer-reviewed 
investigations on the process level yet. However, such investigations 
would be of high value since they would enable SBPM or even SBPC in 
nearly real-time. From our initial experience (Kroell et al., 2022), it 
appears that SBPM is technically feasible, and the prediction accuracy 
depends especially on the prediction at the material flow level. 
Compared to other investigation levels, the challenge at the process level 
is that several sensors have to be used simultaneously as process eval
uation usually consists of at least two different material flows (see 
Section 2.1.3). Once a precise characterization of the material flow level 
is possible, the process assessment can be performed relatively straight- 
forward, e.g., based on the indicators presented in Section 2.1.3. We 
assume that case studies on performance assessments on the process 
level for mechanical unit operations frequently applied in sorting and 
processing plants would be of great value for a better process under
standing. These insights could be helpful, for example, regarding the 
parameterization or modeling of individual unit operations or entire 
sorting or processing plants. 

5.8. Extraction of new characteristics 

Besides the characteristics listed in Section 2.1 and Section 4.2, new 
characteristics could be envisioned that could help to improve material 
circulation further. For example, differentiating food and non-food 
packaging through VIS-RGB data and CNNs could greatly value 
advanced SBS and SBQC. Furthermore, as mentioned in Section 5.2, MIR 

Fig. 11. Presentation of material flows as (a) singled monolayer and (b) multilayered bulks to SBMC sensors. A. hallow spaces, B. large particles aggregate on top, C. 
smaller particles accumulate on the bottom. 
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or NIR sensors combined with CNNs could be used to classify more 
nuanced material classes (van Engelshoven et al., 2019) or, e.g., addi
tives or hazardous substances in plastics. Especially the detection of 
application-orientated interfering substances through deep learning 
could be of great value for improving the quality of produced pre
concentrates and secondary raw materials as, e.g., demonstrated by the 
detection of PE cartages in PE preconcentrates (STEINERT GmbH, 2020; 
TOMRA Systems ASA, 2022b) or waste wood sorting (TOMRA Systems 
ASA, 2022b). 

5.9. Upscaling to plant scale 

As shown in Section 4.5.2, most investigations in our dataset have so 
far been conducted on a laboratory or technical scale. Subsequent 
upscaling is necessary to reach higher TRL levels and bring the in
vestigations from laboratories into applications that generate actual 
ecological benefits. Despite a higher number of unknowns, there is high 
potential in investigations at plant scale, since only under real-world 
conditions, unexpected challenges such as dust, vibrations, interfering 
substances, blockages, material overlay, and surface adhesions occur 
(Parrodi et al., 2021), which need to be overcome to reach higher TRL 
levels. 

5.10. Development of new business models around SBMC 

In addition to the long-term use of the material flow data obtained by 
SBMC for automatic and adaptive process control (see Section 1.1), new 
business models could contribute to increased material circulation along 
the way. 

Downstream of a sorting plant, material flow data of pre- 
concentrates could be utilized in processing plants to adapt, e.g., pro
cess parameters to different input compositions. Based on the measured 
material flow characteristics, SBQC and dynamic pricing models for 
preconcentrates could be possible. Improved SBS and an in-depth 
knowledge of material flows could help produce higher quality sec
ondary raw materials for demanding applications. 

Upstream of a sorting plant, input material flow data could be used to 
optimize waste collection and recycling-friendly production. For 
example, input material flow data could be used to monitor separate 
waste collection in different collection areas, e.g., to make public cam
paigns for separate waste collection more effective. In addition, material 
flow data could help to evaluate the recyclability of different products or 
packaging and provide feedback to product designers or to assess the 
environmental performance of individual products more accurately. 

Ultimately, SBMC methods could contribute to greater transparency 
of mechanical recycling processes and the anthropogenic material cycles 
in which they are embedded. Currently, this transparency is largely 
lacking due to time-consuming and costly plant assessment and sorting 
analysis. SBMC methods can help to close this data gap, leading to more 
transparency and a better decision-making basis. 

6. Conclusions 

Focusing on optical sensors and machine learning algorithms for 
sensor-based material flow characterization in dry-mechanical recycling 
of non-hazardous wastes, this article systematically reviewed 267 in
vestigations from 198 peer-reviewed journal publications published 
between January 2000 and October 2021. 

The review demonstrates that applications of optical sensors and 
machine learning algorithms have received increased attention in recent 
years, with more than half of the investigations published in 2019 – 
2021. The reviewed investigations addressed various material flows, 
especially plastics. Whereas most investigations presented analysis of 
sensor data at the pixel or particle level, less than 5% of all investigations 
conducted analyses at the material flow level, and we identified no in
vestigations at the process level. 

We identified ten different sensors among the wavelength range 
under review (100 nm and 1 mm), with the visible to near-infrared range 
being studied most often. While investigations with VIS-RGB sensors 
often focused on identifying broader material classes with CNNs, NIR 
and MIR sensors were most often used for plastic classification at the 
pixel level. 

In the reviewed publications, a total of 34 different ML algorithms 
have been investigated to predict characteristics from sensor data, with 
PCA, CNN, and PLS being applied the most. CNNs in particular have 
been increasingly applied since 2018: the number of CNN investigations 
in our dataset doubled or more each year and became the most 
frequently applied machine algorithm in our dataset by 2021. A com
parison of the reported test scores of different ML algorithms based on 
Elo ratings indicates that the predictive performance of CNN and RF 
models might be higher than that of other ML algorithms. While appli
cations initially focused on only sensor-based sorting, a trend has 
emerged toward new applications including sensor-based material flow 
monitoring, quality control, and process monitoring/control over the 
past 10 years. 

Our literature review revealed significant research gaps in the field of 
sensor-based material flow characterization demonstrating that little 
research has been conducted at the material flow and process level. In 
particular, research has yet to focus on the conversion of area-based 
sensor data into mass-based material flow characteristics as well as 
the prediction of material flow characteristics in the case of overlapping 
material flow presentation (multilayered bulks). Furthermore, more 
than 90% of all investigations were conducted on laboratory scale, with 
considerable upscaling potential. Future research can especially focus on 
further applications of deep learning methods, on advanced exploitation 
of low-cost sensor systems such as VIS-RGB, and on a broader applica
tion of new sensor technologies (e.g., MIR and THz) for new and more 
nuanced material characteristics. 

The combination of increasingly better and cheaper optical sensors 
with advanced data analysis methods such as deep learning will prob
ably make it possible to characterize material flows with sufficient ac
curacy at plant scale in the next few years. Together with developments 
in remotely controllable actuators and intelligent process control algo
rithms, next-generation sorting and processing plants could not only sort 
and process materials better, but also provide valuable material flow 
information for the entire value chain. In conjunction with other circular 
economy strategies, these developments could significantly close 
anthropogenic material cycles and help to transition the world toward 
sustainable development. 
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Kozmiensky, E., Goldmann, D. (Eds.), Recycling und Rohstoffe. TK-Vlg, Nietwerder, 
pp. 175–191. 

Beigbeder, J., Perrin, D., Mascaro, J.-F., Lopez-Cuesta, J.-M., 2013. Study of the physico- 
chemical properties of recycled polymers from waste electrical and electronic 
equipment (WEEE) sorted by high resolution near infrared devices. Resources, 

Conservation and Recycling 78, 105–114. https://doi.org/10.1016/j. 
resconrec.2013.07.006. 

Belkin, M., Niyogi, P., 2002. Laplacian Eigenmaps and Spectral Techniques for 
Embedding and Clustering, in: Advances in Neural Information Processing Systems. 
MIT Press. 

Berg, H., Sebestyén, J., Bendix, P., Le Blevennec, K., Vrancken, K., 2020. Digital waste 
management ETC/WMGE 2020/4. European Environment Agency, 72 pp. 

Beyerer, J., Puente León, F., Frese, C., 2016. Machine Vision. Springer Berlin Heidelberg, 
Berlin, Heidelberg, 802 pp. 

Bishop, C.M., 2006. Pattern recognition and machine learning. Springer, New York, NY, 
738 pp. 

Blanch-Perez-del-Notario, C., Saeys, W., Lambrechts, A., 2019. Hyperspectral imaging for 
textile sorting in the visible–near infrared range. Journal of Spectral. Imaging a17. 
https://doi.org/10.1255/jsi.2019.a17. 

Boardman, J.W., 1989. Inversion Of Imaging Spectrometry Data Using Singular Value 
Decomposition, in: 12th Canadian Symposium on Remote Sensing Geoscience and 
Remote Sensing Symposium. 12th Canadian Symposium on Remote Sensing 
Geoscience and Remote Sensing Symposium, Vancouver, Canada. IEEE, 
pp. 2069–2072. 

Bobulski, J., Kubanek, M., 2021. Deep Learning for Plastic Waste Classification System. 
Applied Computational Intelligence and Soft Computing 2021, 6626948. 10.1155/ 
2021/6626948. 

Bonifazi, G., Capobianco, G., Serranti, S., 2018a. A hierarchical classification approach 
for recognition of low-density (LDPE) and high-density polyethylene (HDPE) in 
mixed plastic waste based on short-wave infrared (SWIR) hyperspectral imaging. 
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy 198, 
115–122. https://doi.org/10.1016/j.saa.2018.03.006. 

Bonifazi, G., Fiore, L., Hennebert, P., Serranti, S., 2020a. DEVELOPMENT OF A 
SELECTION SYSTEM BASED ON HYPERSPECTRAL IMAGING FOR PLASTIC WASTE 
WITH BROMINATED FLAME RETARDANTS. Environ. Eng. Manag. J. 19 (10), 
1755–1763. 

Bonifazi, G., Gasbarrone, R., Palmieri, R., Serranti, S., 2020b. Hierarchical modelling for 
recycling-oriented classification of shredded spent flat monitor products based on 
hyperspectral imaging. Detritus 13, 122–130. https://doi.org/10.31025/2611- 
4135/2020.14031. 

Bonifazi, G., Gasbarrone, R., Palmieri, R., Serranti, S., 2020c. Near infrared hyperspectral 
imaging-based approach for end-of-life flat monitors recycling. at -. 
Automatisierungstechnik 68, 265–276. https://doi.org/10.1515/auto-2019-0058. 

Bonifazi, G., Gasbarrone, R., Serranti, S., 2021. Detecting contaminants in post-consumer 
plastic packaging waste by a nir hyperspectral imaging-based cascade detection 
approach. Detritus 15, 94–106. https://doi.org/10.31025/2611-4135/2021.14086. 

Bonifazi, G., Palmieri, R., Serranti, S., 2015. Hyperspectral imaging applied to end-of-life 
(EOL) concrete recycling. tm -. Technisches Messen 82, 616–624. https://doi.org/ 
10.1515/teme-2015-0044. 

Bonifazi, G., Palmieri, R., Serranti, S., 2017. Concrete drill core characterization finalized 
to optimal dismantling and aggregates recovery. Waste management (New York N. 
Y.) 60, 301–310. https://doi.org/10.1016/j.wasman.2016.10.008. 

Bonifazi, G., Palmieri, R., Serranti, S., 2018b. Evaluation of attached mortar on recycled 
concrete aggregates by hyperspectral imaging. Construction and Building Materials 
169, 835–842. https://doi.org/10.1016/j.conbuildmat.2018.03.048. 

Bonifazi, G., Serranti, S., 2006. Imaging spectroscopy based strategies for ceramic glass 
contaminants removal in glass recycling. Waste management (New York N.Y.) 26, 
627–639. https://doi.org/10.1016/j.wasman.2005.06.004. 

Borel, P., Sabater, J., Tourtollet, G.E.P., Cochaux, A., Veiga, J., 2007. Using NIR 
spectrometry for direct control of recovered papers. Palpu Chongi Gisul/Journal of 
Korea Technical Association of the Pulp and Paper Industry 39, 58–63. 

Breiman, L., 2001. Random Forests. Machine Learning 45, 5–32. https://doi.org/ 
10.1023/A:1010933404324. 

Brunner, S., Fomin, P., Kargel, C., 2015. Automated sorting of polymer flakes: 
fluorescence labeling and development of a measurement system prototype. Waste 
management (New York N.Y.) 38, 49–60. 

Bundesvereinigung Deutscher Stahlrecycling- und Entsorgungsunternehmen e. V., 1995. 
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