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A B S T R A C T   

Today’s post-consumer plastic recycling is limited by labor-intensive manual quality control (MQC) procedures, 
resulting in largely unknown pre-concentrate purities. Sensor-based quality control (SBQC) could enable an 
automated inline quality monitoring and thus contribute to a more transparent and enhanced plastic recycling. 
Therefore, we investigated the technical feasibility of near-infrared-based SBQC for plastic pre-concentrates in a 
lightweight packaging waste sorting plant. The developed SBQC method outperformed MQC methods by 
reducing measurement uncertainties from between ±0.8 wt% and ±6.7 wt% (MQC) to ±0.31 wt% (SBQC) for 
bale-specific purities at monolayered material flow presentations. In addition, we show that SBQC may even be 
possible at multilayered material flow presentations, although further research is needed to address identified 
segregation effects. The demonstrated technical feasibility of SBQC at plant scale represents a major break
through as it opens new opportunities in plastic recycling, such as adaptive pricing models and intelligent process 
control in sorting plants.    

Abbreviations 
BC beverage carton; 
BG background; 
CSV comma-separated value; 
DSD Der Grüne Punkt Duales System Deutschland GmbH; 
EU European Union; 
HDPE high-density polyethylene; 
LWP lightweight packaging; 
ML machine learning; 
MQC manual quality control; 
MU measurement uncertainty; 
NIR near-infrared; 
nMU normalized measurement uncertainty; 
PCC Pearson correlation coefficient; 
PET polyethylene terephthalate; 
PP polypropylene; 
PPC paper, paperboard, and cardboard; 

PS polystyrene; 
RGB red, green, blue; 
RQ research question; 
SBQC sensor-based quality control; 
SP sensor position; 
UNDEF undefined 

1. Introduction 

In 2020, the European Union (EU) 27+3 collected 29.5 Mt/a of post- 
consumer plastic waste, but only 18.6 wt%1 to 22.0 wt%2 of the 
collected plastics were turned into plastic recyclates, while the 
remainder was incinerated or landfilled (Plastic Europe, 2022b). 
Therefore, massive improvements in post-consumer plastic recycling are 
needed to make a relevant contribution to climate and resource pro
tection (European Commission, 2019; United Nations, 2015) and a 
competitive circular economy (Bachmann et al., 2023; European Com
mission, 2020). 

* Corresponding author at: Department of Anthropogenic Material Cycles, RWTH Aachen University, Wuellnerstr. 2, D-52062, Aachen, Germany. 
E-mail address: nils.kroell@ants.rwth-aachen.de (N. Kroell).   

1 Assuming all exported material was incinerated or landfilled.  
2 Assuming all exported material was processed into 100% recyclates. 
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Plastic packaging is the largest source of post-consumer plastic waste 
in the EU 27+3, amounting to 17.9 Mt/a (60.7 wt% of the total post- 
consumer plastic waste) in 2020 (Plastic Europe, 2022a). Recycling of 
post-consumer packaging waste involves three stages: plastic waste 
collection based on country/region-specific collection schemes, sorting 
into material-specific pre-concentrates in sorting plants, and processing 
pre-concentrates into recyclates in processing plants (Feil and Pretz, 
2020). Generated plastic recyclates can then substitute primary plastics 
during production processes and achieve significant environmental 
benefits, e.g., in terms of energy and greenhouse gas emission savings 
(Bachmann et al., 2023; Cudjoe et al., 2021). 

As the crucial intermediate between collection and processing, the 
quality of pre-concentrates generated in sorting plants significantly affects 
the overall process efficiency in post-consumer plastic recycling (Feil 
and Pretz, 2020). Low-quality pre-concentrates can lead to significant 
material losses and to sub-optimal recyclate quality in processing plants 
(Dehoust and Christiani, 2012), thereby hampering the substitution of 
primary plastics and ultimately limiting the achievable environmental 
benefits (bvse-Fachverband Kunststoffrecycling, 2017; Hahladakis and 
Iacovidou, 2018). Suboptimal pre-concentrate qualities have been crit
icized in the past (e.g., bvse-Fachverband Kunststoffrecycling, 2016; 
2017; EU Recycling, 2018) and significant deviations from purity 
specifications have been documented (bvse-Fachverband Kunststof
frecycling, 2017; Knappe et al., 2021). 

1.1. Limitations of manual quality control 

Currently, the quality of plastic pre-concentrates is determined by 
manual quality control (MQC), i.e., sampling and manual sorting anal
ysis (Borowski, 2018; Der Grüne Punkt, 2016). Because of the necessary 
sampling and manual sorting analysis, MQC is time-consuming and 
cost-intensive, and thus often only performed on an irregular basis 
(Borowski, 2018). For example, Borowski (2018) reports that a quality 
control team consisting of two to three experienced employees needs 
about two hours to analyze a single pre-concentrate bale (=4–6 person 
hours per bale), while modern sorting plants produce several hundred 
bales per day. Hence, quality control with MQC methods can only be 
performed on a spot-check basis for selected bales. 

The lacking transparency on batch-specific pre-concentrate qualities 
currently results in pre-concentrates being traded on a flat-rate basis, i.e., 
irrespective of their (bale-specific) quality (plasticker, 2023). Thus, 
combined with high disposal costs for residual fractions, sorting plant 
operators have thus a business interest in sorting only "as good as 
necessary" instead of "as good as possible", since better sorting would 
lead to higher disposal costs for the higher quantity of the then gener
ated sorting residues as well as lower income due to the reduced overall 
quantity of pre-concentrates (Knappe et al., 2021). In addition, technical 
optimizations in sorting plants can be challenging due to the missing 
benchmark without a reliable and in-time measurement of produced 
pre-concentrate qualities (Kroell et al., 2022a). 

1.2. Opportunities through sensor-based quality control 

Sensor-based quality control (SBQC) could enable automatic, real- 
time, and batch-specific knowledge of the quality (i.e., purity) of pre- 
concentrates and thus considerably enhance post-consumer plastic 
recycling (Kroell et al., 2022a): 

1.2.1. Adaptive pricing models 
By monitoring the quality of each batch, the pricing of pre- 

concentrates could transition from a flat-rate basis to adaptive pricing 
models, where higher pre-concentrate quality results in higher prices, 
thereby adjusting the incentives for sorting plant operators. 

1.2.2. Process optimization in sorting plants 
Automatic monitoring of pre-concentrate qualities would allow for 

timely detection and correction of quality deficits, e.g., by using adap
tive process control of the sorting plant to improve overall sorting 
quality. 

1.2.3. Evaluation and optimization of separate collection 
Information on material composition and quantity of output frac

tions could be used to calculate back to the sorting plant input (collected 
mixed lightweight packaging waste), thus, enabling the evaluation and 
optimization of separate collection (e.g., assessment of public campaigns 
to improve separate collection [Initiative „Mülltrennung wirkt“, 2021]). 

1.2.4. Process optimization in processing plants 
By sharing data along the value chain, processing plants could 

benefit from known input qualities, e.g., through input-adaptive process 
parameterization to varying pre-concentrates qualities or an optimized 
distribution of pre-concentrate qualities across processing plants with 
different processing technologies and depths. 

1.3. Related work and research gap 

Data analysis for SBQC applications can be divided into pixel, par
ticle, and material flow levels (Kroell et al., 2022a). At the pixel and 
particle level, numerous studies (e.g., Bonifazi et al., 2018; Calvini et al., 
2018; Chen et al., 2021; Duan and Li, 2021; Xia et al., 2021; Zheng et al., 
2018) have demonstrated that non-carbon-black plastics can be differ
entiated with ≥ 99% accuracy using near-infrared (NIR) spectroscopy. 

However, the quality of plastic pre-concentrates is not defined in 
terms of pixels and particles but by the mass-based composition of the 
entire material flow, i.e., the aggregation of thousands of particles (cf. 
Section 2.1). Yet, little research has been conducted for sensor-based 
determination on mass-based material flow composition, which comes 
with a new set of challenges such as finding appropriate data aggrega
tion methods, area-to-mass-conversion, and different counting basis (cf. 
Section 2.2) (Kroell et al., 2022a). 

Kroell et al. (2023a) recently demonstrated the technical feasibility 
of predicting mass-based material flow compositions from NIR-based 
false-color data using machine learning (ML). Through regression 
models and data aggregation, it was possible to predict mass-based 
material flow compositions of binary post-consumer plastic packaging 
mixtures with a measurement uncertainty of ±2.0 wt% across different 
material flow presentations at technical lab scale (Kroell et al., 2023a; 
Kroell et al., 2023b). However, to our best knowledge, the technical 
feasibility of NIR-based quality control of plastic pre-concentrates at 
plant scale has yet to be shown. 

1.4. Aim and research questions 

With the present paper, we aim to demonstrate the technical feasi
bility of inline-SBQC of plastic pre-concentrates from lightweight- 
packaging (LWP) sorting at plant scale by answering the following 
four research questions (RQs):  

• RQ 1: What prediction accuracies can be achieved for monitoring 
impurity contents using NIR sensors at monolayer presentation and 
which data processing techniques and training dataset sizes are 
feasible for accurate predictions?  

• RQ 2: How accurate is the prediction of bale-specific purities using 
SBQC methods compared to MQC at monolayer presentation?  

• RQ 3: What is the variation of plastic pre-concentrate purities in a 
LWP sorting plant?  

• RQ 4: How feasible is SBQC at a multilayered material flow 
presentation? 

N. Kroell et al.                                                                                                                                                                                                                                   
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2. Background 

2.1. Quality definitions of plastic pre-concentrates 

Pre-concentrate qualities are defined by their purity, i.e., the mass- 
based share of target material in a pre-concentrate batch (Borowski, 
2018; Der Grüne Punkt, 2023; Feil et al., 2021). As pre-concentrates are 
transported as bales between sorting and processing plants, a batch in 
sorting plants refers to a compressed cuboid plastic bale with median 
dimensions of approx. 1100 mm x 1100 mm x 1200 mm and a mass of 
approx. 200 kg to 1000 kg (depending on the pressed material) (Bor
owski, 2018). 

For example in Germany, pre-concentrate purities are often specified 
based on the Der Grüne Punkt Duales System Deutschland GmbH (DSD) 
specifications (Der Grüne Punkt, 2023). A transparent polyethylene 
terephthalate (PET) bottle bale, for example, must contain at 
least 98 wt % transparent PET bottles according to the DSD specifica
tions (Der Grüne Punkt, 2023). 

2.2. Purity definitions 

Along the plastic recycling value chain, different stakeholders use 
different references for defining the term purity, which can cause 
confusion, especially at the interfaces between different stakeholders. 
Therefore, we propose to differentiate between three different purity 
definitions (Table 1):  

• Article-based purity: An article is a piece of packaging that may 
consist of several components and materials. It may also contain 
residues or contaminants. Article-based purity is defined as 100 % 
when the target material content exceeds an application-specific 
threshold. For example, a post-consumer PET bottle is considered 
100 % pure, even if it contains, e.g., a bottle cap made of high-density 
polyethylene (HDPE), a label made of polypropylene (PP), remaining 
residual contents (e.g., liquids), and adhering dust. 

• Material-based purity: In contrast to article-based purity, all me
chanically removable non-target materials connected to a target 
article are considered impurities for material-based purity. In the 
PET bottle example, HDPE bottle caps, PP labels, remaining residual 
contents, and adhering dust are now considered impurities, since 
they can be mechanically removed (e.g., through separation steps 
like washing processes).  

• Chemical purity: In addition to the material-based purity, all non- 
target molecules are considered impurities when defining a chemi
cal purity, even if they cannot be (mechanically) removed. This in
cludes, for example, additives, fillers, and reinforcing materials. For 
example, a washed and cleaned PET flake would not be considered 
100 % pure as it contains non-PET molecules such as color pigments 
or UV stabilizers. 

Article-based purity definitions are typically used during waste 
collection and in sorting plants, while material-based purity definitions 
are frequently used in plastic processing and chemical purity definitions 
are used, e.g., in chemical recycling. The stricter the purity definition, 
the lower is the determined purity Pm, i (Eq. (1)). 

Pm, article− based ≥ Pm, material− based ≥ Pm, chemical (1)  

2.3. Potential SBQC sensor positions 

As SBQC aims to analyze final pre-concentrate purities, it should take 
place after the last sorting stage and before the bale press. For most 
modern sorting plants, two sensor positions fulfill both criteria (see 
Fig. 1b):  

• Sensor position 1 (P1): product conveyor belts feeding the material 
into product bunkers,  

• Sensor position 2 (P2): feeding conveyor belts towards the bale 
press. 

Sensor position P1 allows SBQC at a monolayer material flow pre
sentation, i.e., particles do not overlap each other, while material flows 
at sensor position P2 are transported as multilayered bulks, i.e., particles 
strongly overlap each other (Kroell et al., 2023a). As NIR spectroscopy is 
a surface measurement technology (Workman and Weyer, 2007), 
NIR-based characterization of multilayered bulks (P2) can be chal
lenging, e.g., due to segregation effects (Kroell et al., 2023a). However, 
sensor position P2 permits the monitoring of multiple pre-concentrate 
types with a single sensor, while sensor position P1 requires separate 
sensors for each pre-concentrate type, thus reducing potential invest
ment costs (Kroell et al., 2022a). 

3. Material and methods 

To compare both sensor positions and answer the RQs from Section 
1.4, we conducted two test series A and B in a state-of-the-art LWP 
sorting plant in Germany. 

3.1. Experimental setup 

3.1.1. Test series A 
Test series A aimed at investigating the technical feasibility of SBQC 

at plant scale at monolayer material flow presentation (sensor position 
P1; RQ 1) and then comparing the SBQC results with MQC (RQ 2). As 
shown in Fig. 1a, a state-of-the-art NIR sensor (”NIR A1”) was mounted 
on the conveyor belt of a PET tray product belt (P1) for inline monitoring 
of the full material flow (Section 3.2.1 to Section 3.2.3). 

To validate the NIR data with MQC, all impurities were manually 
sorted out by two human experts with several hundred hours of expe
rience in manual sorting analysis of post-consumer plastic packaging. 
The human experts were positioned directly after the NIR sensor 

Table 1 
Proposed definition of article-based, material-based and chemical purities; ✔: 
included in purity definition, –: not included in purity definition.  

Constituents Examples Included in 
Article- 
based 
puritya 

Material- 
based 
purity 

Chemical 
purity 

Agglomerates Multiple 
interlocking 
packages, e.g., 
through post- 
consumer 
influences 

✔b – – 

Secondary 
components 

Labels and sleeves 
inclusive adhesives, 
lids 

✔ – – 

Residual content Remaining liquids ✔ – – 
Adhesive 

contamination 
Dust, adhesive 
organics 

✔ – – 

Material-bound 
additives, 
fillers, and 
reinforcing 
materials 

Color pigments, UV 
stabilizers, 
antistatic agents, 
plasticizers, flame 
retardants, glass 
fibers 

✔ ✔ – 

Target molecule Polypropylene, 
aluminum 

✔ ✔ ✔ 

Unit  wt% wet wt% dry wt% dry  

a oriented on Der Grüne Punkt (2023) 
b depending application-specific target-material threshold and definition of 

the sorting catalogue. 
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(Fig. 1a) and immediately dropped any impurities in a sample container 
(V = 90 L), whose weight was recorded every second using a digital 
balance (Section 3.2.4). 

Each trial lasted for 25 s during which the data of NIR A1 and the 
digital balance was recorded. After each 25 s trial, the sample container 
was emptied and time was given to the human experts to recover from 
the intense sorting, such that all sorting trials could be conducted at 
maximum concentration and with maximum accuracy over the course of 
three days. In total, n = 417 trials were recorded resulting in 
174 minutes of manual sorting data during which 1,562 kg of PET tray 
product was manually sorted and recorded. 

3.1.2. Test series B 
Test series B aimed at quantifying purity variations (RQ 3) and 

assessing the technical feasibility of SBQC at multilayered material flow 
presentation (sensor position P2; RQ 4). During test series B, the full NIR 
data of two NIR sensors were recorded for a duration of 30 h. As shown 
in Fig. 1b, the first NIR sensor (“NIR B1") was positioned at the identical 
position and with the same configuration as NIR A1 (=sensor position 

P1), and the second NIR sensor (NIR B2) was positioned over the feeding 
conveyor belt to a bale press (sensor position P2), thus monitoring the 
bale-wise composition of PET tray and other plastic pre-concentrates 
(PET bottle, PP, HDPE, and polystyrene [PS]). In addition, all recor
ded fractions were sampled, manually analyzed, and immediately 
returned to the bunker to generate additional MQC data to validate the 
NIR results without influencing the NIR B2 measurements (Section 
3.2.5). 

3.2. Data acquisition 

3.2.1. NIR sensor configuration 
In both test series, hyperspectral imaging NIR sensors EVK HELIOS 

EQ32 from EVK Kerschhaggl GmbH (Raaba, Austria) were used. The 
used wavelength range was 1,017 nm to 1,702 nm at a spectral resolu
tion of 3.1 nm per channel. All sensors were operated at a framerate of 
446 Hz. 

At sensor position P1 (Fig. 1c), the effective belt width was b ≈
520 mm and the conveyor belt speed was v ≈ 0.42 m/s, resulting in a 

Fig. 1. Experimental setup of (a) test series A and (b) test series B as well as NIR sensor setup and material flow presentation at (c) sensor position P1 [PET tray 
product conveyor belt, monolayer material flow presentation] and (d) sensor position P2 [feeding conveyor belt bale press, multilayered material flow presentation]. 
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spatial resolution of 3.31 mm2/px. At sensor position P2 (Fig. 1d), the 
effective belt width was b ≈ 830 mm, and the conveyor belt speed was v 
≈ 1.2 m/s, resulting in a spatial resolution of 13.41 mm2/px. 

Halogen lamps with 400 W each were used to illuminate the material 
flow as it moved below the NIR sensor (cf. Fig. 1c+d). At sensor position 
P1, two halogen lamps from the front and two halogen lamps from the 
back were used (4 × 400 W = 1,600 W in total). At sensor position P2, 
four halogen lamps from the front and four halogen lamps from the back 
were used (8 × 400 W = 3,200W in total). To prevent overheating of the 
conveyor belt at a belt standstill and recording redundant data, the 
power supply of the NIR illumination was coupled with the belt control 
such that the NIR illumination switched off automatically when the 
conveyor belt stopped. 

3.2.2. NIR classification models 
The material flow was classified pixel-based in real-time using the 

on-chip classification algorithm CLASS32 from EVK Kerschhaggl GmbH 
(Raaba, Austria) based on normalized first-derivatives of the acquired 
NIR spectra (EVK Kerschhaggl GmbH, 2023a). 

Six material classes were trained to the classification model: PET, PP, 
polyethylene (PE), PS, beverage carton (BC), as well as paper, paper
board, and cardboard (PPC). For each material class, a variety of 
different packaging articles was sampled from the sorting plant, recor
ded, and added as reference spectra to the classification model (see Fig. 
S1 and Fig. S2 in supplementary materials) to ensure a high classifica
tion accuracy. For defining the reference spectra, representative regions 
of the recorded raw spectra were selected, such that, e.g., edge effects 
are avoided (Chen and Feil, 2019; Küppers et al., 2019). 

The reference spectra also include sleeved and labeled parts of plastic 
bottles, which can have a significant influence on the NIR classification 
(Chen et al., 2023). These sleeved and labeled parts were added as 
reference spectra to the material class of the bottle material (e.g., an 
HDPE bottle with a PET sleeved is trained as “PE”), to assure a classi
fication of the plastic article as fully correct as possible (cf. Chen et al., 
2023). Likewise, wet articles were used as training materials to exclude 
the influence of NIR absorption of water on the classification (cf. Küp
pers et al., 2019). Lastly, overlays of transparent material on top of other 
materials (e.g., PET tray on top of an HDPE bottle) are trained as 
reference spectra, such that always the material on top is classified, to 
avoid systematic over/underestimation of certain materials (cf. Kroell 
et al., 2023a). 

Background (BG) pixels (black conveyor belt) and material pixels 
were differentiated using the mean intensity of the raw NIR spectra 
based on a user-defined threshold. NIR spectra that differ significantly 
from the reference spectra are classified as “undefined” (UNDEF) by the 
CLASS32 algorithm, resulting in a total of eight different NIR outputs 
(PET, PP, PE, PS, BC, PPC, UNDEF, BG). Within CLASS32, three spectral 
regions of interest for classification were defined (NIR 1: 1082 nm – 
1261 nm, 1352 nm – 1514 nm, 1621 nm – 1702 nm; NIR 2: 1107 nm – 
1242 nm, 1342 nm – 1505 nm, 1615 nm – 1696 nm), where the NIR 
spectra of the investigated materials differ most (see Fig. S1 and Fig. S2). 
As shown in Fig. S3, the classification model classifies all six material 
classes correctly. Smaller classification errors occur between BC and PPC 
(especially for plastic coated PPC) and due to labeled or sleeved parts of 
packaging items. 

3.2.3. NIR data acquisition 
After uploading the NIR classification model from Section 3.2.2 to 

the NIR sensor, the CLASS32 algorithm then assigns a material class 
(represented as a false-color) to each recorded pixel. The resulting false- 
color data was captured using the EVK Stream Supervisor software (EVK 
Kerschhaggl GmbH, 2023b). In the EVK Stream Supervisor software, the 
false-color images are aggregated over 0.1 s and the pixel counts are 
then saved along with a timestamp in a comma-separated value (CSV) 
file. 

3.2.4. Digital balance 
For test series A, the impurity masses were recorded with a digital 

balance (KERN IFB 60L-3L; KERN & SOHN GmbH [Balingen-Frommern, 
Germany]) with a precision of ±0.002 kg and a maximum weight of 
60 kg. The weight was written automatically every second along with a 
timestamp to an Excel file through the software SCD-4.0-PRO from 
KERN & SOHN GmbH. 

3.2.5. Manual sorting analysis 
For test series B, the plastic pre-concentrate fractions (PET tray, PET 

bottle, PP, HDPE, and PS) recorded by NIR B2 were additionally 
sampled, and their composition was analyzed through manual sorting 
analysis. The sampling was performed according to LAGA PN 98 (2001) 
using the existing automatic sampling system based on temporarily 
reversing the respective bunker feeding belt into a sampling container to 
create ideal sampling conditions with a sample volume of 180 L. 

After sampling, the sample was immediately manually sorted into 
the following material fractions by human experts: PET tray, PET bottle, 
PP, PE, PS, BC, PPC, non-ferrous metals, ferrous metals, composites, and 
residual. Each sorted fraction was weighted using a digital balance 
(KERN DS 150K1, KERN & SOHN GmbH [Balingen-Frommern, Ger
many]) with a precision of ±0.001 kg and a maximum weight of 150 kg 
to determine the material composition of each sample. After manual 
sorting analysis, the full sampled material (incl. impurities) was mixed 
together, homogenized, and returned to the bunker feeding belt to make 
sure that the NIR B2 recordings were as little as possible influenced by 
the sampling3. Since the focus is on PET tray, the PET tray fraction and 
all other fractions were sampled alternatively resulting in the following 
sampling schedule: PET tray, PET bottle, HDPE, PET tray, PS, PET tray, 
PP. After each cycle, the sampling schedule was repeated. In total, n =
46 samples were taken and manually analyzed resulting in a total 
analyzed sample volume of 8,280 L and a total sample mass of 244 kg. 

3.3. Data processing 

For data processing, data visualization, and ML model training and 
evaluation, custom Python scripts were developed. The following open- 
source packages were primarily used: NumPy (Harris et al., 2020) [data 
storage and data processing], pandas (McKinney, 2010; The pandas 
development team, 2020) [data storage and data processing], scikit-learn 
(Pedregosa et al., 2011) [training and evaluation of regression models], 
SciPy (Virtanen et al., 2020) [statistics], matplotlib (Hunter, 2007) [data 
visualization], and seaborn (Waskom, 2021) [data visualization]. 

3.3.1. Spatial calibration 
First, the pixel counts per 0.1 s from Section 3.2.3 were transformed 

into area flows [m2/h] by using the spatial resolution from Section 3.2.1. 
For determining the spatial resolutions, false-color recordings of circular 
calibration targets of 170 mm diameter were recorded. The spatial res
olution was then calculated by dividing the area of the calibration tar
gets by the number of pixels of the calibration target. 

3.3.2. Area-to-mass conversion using material-specific grammages 
For the conversion between area-based NIR recordings and mass- 

based impurity masses, material-specific grammages were determined. 
Therefore, product material flows were sampled according to LAGA PN 
98 (2001) (cf. Section 3.2.5) and the sampled material was manually 
sorted into pure material classes (PET tray, PET bottle, PP, HDPE, PS, 
BC, and PPC). Afterward, material feeding on the PET tray belt was 

3 Due to the sample homogenization, multiple belt transfers between the 
point where the sample were returned and NIR 2 as well as the relative low 
share (≤ 1.5 wt%) of sample masses (2.4 kg to 9.0 kg, mean: 5.3 kg) compared 
to the pre-concentrate bale masses (600 kg), the influences on the sampling on 
NIR 2 are considered as neglectable in the following. 
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manually stopped and the mono-material fractions were batch-wise 
recorded using NIR B1. For each batch, the false-color data from 
NIR B1 and the total mass of the batch were recorded. In total, the 
following masses per mono material fractions were recorded: PET bottle: 
12.2 kg, PET tray: 2.7 kg, PP: 6.3 kg, PE: 7.1 kg, PS: 3.8 kg, BC: 12.2 kg, 
PPC: 3.6 kg. 

Afterward, material-specific grammages were calculated according 
to Eq. (2) based on the total mass of recorded mono-material fractions mi 
and the total area per recorded mono material fraction (incl. non-target 
pixels) Ai. 

ρA,i =
mi

Ai
(2) 

Table 2 summarizes the determined grammages. Since no sample 
material for the NIR material class UNDEF can be collected, a grammage 
of ρA, UNDEF = 1.63 kg/m2 was used, which is the mean grammage over 
all other seven material classes from Table 2. 

3.3.3. Area-to-mass conversion using machine learning 
Based on the insights from Kroell et al. (2023a), ML models were 

used as an alternative for predicting the mass-based impurity contents 
and material flow compositions from area-based NIR data. 

For test series A, the total impurity mass flow can be calculated from 
the impurity mass of one trial measured by the digital balance (mimpurity) 
and the duration of one trial (Δttrial = 25 s) using Eq. (3). 

ṁimpurity =
Δm
Δt

=
mimpurity

Δttrial
(3) 

Therefore, a multivariate linear regression model (fA, Eq. (4)) was 
trained to predict the total impurity mass flow ˙̂mimpurity [kg/h] from the 
area flows Ȧi [m2/h] of each material class detected by the NIR sensor 
(cf. Section 3.2.2) excluding background4. 

˙̂mimpurity = fA(ȦPET, ȦPP, ȦPE, ȦPS, ȦBC, ȦPPC, ȦUNDEF) (4) 

To increase the practicality and robustness of our ML model in 
lightweight-packaging waste sorting plants, we divided our dataset into 
20% (n = 83 trials) training data and 80% (n= 334 trials) test data. Our 
goal was to demonstrate that a satisfactory model could be achieved 
even with a small training set, thereby increasing efficiency for indus
trial applications by reducing data collection needs. Moreover, a large 
test dataset was employed for a robust analysis of the ML model per
formance and the comparison with MQC methods (cf. Section 4.2). 

3.3.4. Throughput estimation 
Besides impurity masses, it is necessary to know the total product 

mass flow to calculate the purities of a material flow or pre-concentrate 
bale (cf. Eq. (6)). For industrial SBQC applications, information on 
product masses is often available from the bunker system in terms of the 

total mass of each produced bale. However, for calculations in Section 
3.4, it is necessary to estimate the PET tray product mass flow at a higher 
temporal resolution (25 s). 

Previous research (e.g., Curtis et al., 2021; Kroell et al., 2022b; 
Küppers et al., 2020; Küppers et al., 2022) has established a strong 
correlation between mass flows and area flows. To enhance throughput 
estimation, we therefore calculated the throughput ṁPET tray product using 
the total area flow measured by NIR A1 (ȦPET tray product) as follows: 

ṁPET tray product = ȦPET tray product *ρA, PET tray product (5) 

To determine the mean grammage ρA, PET tray product, we first measured 
the total occupied area (including impurities) of the 39.7 Mg PET tray 
product using NIR A1. Then, we employed Eq. (2) to calculate the mean 
grammage as ρA,PET tray product = 1.79 kg/m2. 

3.3.5. Outlier removal 
During preprocessing of test series A, we removed two non- 

representative outliers (trials no. 127 and 128; 0.5% of the total data
set) with impurity mass flows of 395.7 kg/h and 332.4 kg/h, as both 
outliers deviated significantly both from the median (25.3 kg/h) and the 
next largest impurity mass flow (117.5 kg/h). The outliers resulted from 
two water-soaked shoes with an approximate mass of approx. 2 kg each 
in the PET tray material flow and not removing them would make ML 
model training and evaluation practically infeasible. While, in the cur
rent study, the two outliers were omitted to demonstrate the general 
technical feasibility of the SBQC approach, given their low frequency 
and significant deviation from the other datapoints, a detailed consid
eration of such outliers regarding the application-specific relevance is 
recommended when applying our findings into operational practice and 
the evaluation of future SBQC measurement systems (cf. Section 5). 

3.4. Comparison of SBQC and MQC (bale sampling simulation) 

To answer RQ 2, SBQC and MQC methods were compared with each 
other on the task of predicting the purity of a PET tray bale with an 
average mass of 600 kg. As it is unfeasible to manually sort hundreds of 
PET tray bales to determine the necessary ground truth, different bale 
compositions were digitally generated from test series A. 

Therefore, the data from test series A was first randomly split into 
20% training and 80% test data (cf. Fig. 2a). The training set was used to 
train ML model A (Section 3.3.3) for SBQC and the test set was used as 
the ground truth for creating simulated PET tray bales with known 
compositions. 

3.4.1. Simulation of different PET tray bales 
The test set consists of n = 334 trials containing in total 1242.4 kg 

manually sorted material (approx. 2.1 bales) each with the corre
sponding impurity (Section 3.1.1) and total masses (Section 3.3.4). To 
create a simulated PET tray bale, we randomly sampled n trials from the 
test set without replacement until a total sample mass of 600 kg was 
reached. These n trials then represent one simulated PET tray bale with 
its known mass mbale and known purity Pm,bale according to Eq. (6). 

Pm, bale =
mimpurity

mbale
=

∑n

i=1
mimpurity, i

∑n

i=1
mi

(6)  

3.4.2. Simulation of MQC sampling 
State-of-the-art MQC of pre-concentrates in LWP sorting plants in

volves sampling. The required sample sizes for a pre-concentrate bale 
can be calculated based on different technical norms and guidelines (see 
Section 1 in supplementary materials). In the case of a 600 kg PET tray 
bale, applying these norms and guidelines results in required sample 
sizes of 0.9 kg (CEN/TR 15310-1, 2006), 3.2 kg (LAGA PN 98, 2001), 
40.0 kg (GBP Quality GmbH, 2023), 50.0 kg (COREPLA, 2022), 
80.0 kg–90.0 kg (Der Grüne Punkt, 2016), and 123.0 kg (ÖNORM S 

Table 2 
Determined material-specific grammages.  

Material class Grammage [kg/m2] 

PET bottle 2.17 
PET tray 1.22 
PP 1.79 
PE 2.64 
PS 1.34 
BC 1.97 
PPC 0.79  

4 Since the total area flow (materials + background) is constant, the back
ground area flow is linear dependent on the sum of all material area flows and 
thus excluded from model training, cf. Fahrmeir et al. (2013). 
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2127, 2011). 
To simulate the influence of different sample sizes, we randomly 

sampled k of these n trials, which then represents a sample with the total 
sample mass msamples(k). As in traditional MQC, the purity of the total 
bale is estimated by the purity of the sample according to Eq. (7). 

P̂m, bale, MQC(k) =
mimpurity(k)
msamples(k)

=

∑k

i=1
mimpurity,i

∑k

i=1
mi

with k ≤ n (7)  

3.4.3. Simulation of SBQC inline monitoring 
In contrast to MQC, SBQC methods analyze the full material flow, 

therefore no sampling is involved. Thus, ML model A was used to predict 
the impurity mass for each of the n trials (m̂impurity, SBQC, i). The predicted 
purity of the bale (P̂m, bale, SBQC) is then calculated by dividing the 
summed-up impurity mass (m̂impurity, SBQC) through the total bale mass 
(Eq. (8)). 

P̂m, bale, SBQC =
m̂impurity, SBQC

mbale
=

∑n

i=1
m̂impurity, SBQC, i
∑n

i=1
mi

(8) 

This process was repeated for a total of 1,000 different PET tray 
bales. This was the basis for the assessment of the measurement uncer
tainty of MQC methods with different sample sizes and the proposed 
SBQC methods. 

3.5. Assessment of measurement uncertainty 

To assess the predicted (im)purities for answering RQ 1 and RQ 2, 
we use the 95 %-percentile measurement uncertainty (MU) metric ac
cording to Kroell et al. (2023a). The MU95 is the 95th percentile (P95) of 
all absolute errors between a set of measurands Xmeasured and its corre
sponding true values Xtrue (Eq. (9)) 

MU95 = P95(|Xmeasured − Xtrue|)

with X = {x1,…, x n} (9) 

The MU95 indicates that in 95 % of all cases, the true value (xtrue) is in 
the range xmeasured ± MU95 (Kroell et al., 2023a). For example, if an SBQC 
system is predicting a purity of 96 wt%, with a MU95 of 2 wt%, then the 
true purity is between 94 wt% and 98 wt% in 95 of 100 measurements. 
The lower the MU95 values, the more accurate are the predictions. 

As the MU95 indicates the deviations in absolute terms, we use the 
normalized MU (nMU95) defined in Eq. (10) to express relative de
viations. The nMU95 is the MU95 devided by the mean measurement 
values (x̄measured). 

nMU95 =
MU95(Xmeasured)

x̄measured
(10)  

4. Results and discussion 

4.1. Impurity mass flow prediction at monolayer presentation (RQ 1) 

Fig. 2a shows the impurity mass flows of test series A determined by 
manual sorting of human experts over the course of n = 417 trials and 
the applied random train-test-split. High variations in the measured 
impurity flows between 0 kg/h and 117.5 kg/h (mean: 28.3 kg/h) can 
be observed. 

4.1.1. Comparison of material-specific grammage and ML model 
Fig. 2b compares the grammage (Section 3.3.2) and ML model 

(Section 3.3.3) in predicting the impurity mass flow based on the NIR A1 
data. As shown in Fig. 2b, the grammage model overestimates the im
purity mass flow on average by a factor of 2.11, resulting in an nMU95 of 
218.0%. In contrast, the predictions of ML model A are more accurate 

with an nMU95 of 94.6% on the raw data. 
A likely reason for the overestimation of the grammage model is the 

discrepancy between article-based and material-based purity definitions 
(cf. Section 2.2, esp. Eq. (1)). In an article-based purity definition, used 
by human experts, non-PET materials are counted as impurities only if 
they are not physically connected to a PET article. The NIR sensor, 
however, classifies each pixel independently of its connection to other 
materials. Since each non-PET pixel directly contributes to the predicted 
impurity for the grammage model, non-PET pixels from PET articles (e. 
g., PP films, PPC labels belonging to PET trays) are always counted as 
impurities. 

In contrast, the ML model is trained on the article-based impurity 
definition by the human experts in the manual sorting (training) data. It 
can thus correct these composite effects by adjusting its model co
efficients. However, as shown in Fig. 2c, especially high impurity mass 
flows are still difficult to be predicted for the model. A possible reason 
for this is a large variance of grammages in post-consumer packaging 
waste (cf. Kroell et al., 2021), which makes accurate predictions on the 
unaggregated raw data (here: 25 s chunks) challenging (cf. Kroell et al., 
2023a). 

4.1.2. Influence of data aggregation (chunk size) 
Since the investigated sorting plant produces a PET tray bale 

approximately every Δtbale = 67 min, 25 s values of SBQC are not 
necessary for this use case. Aggregation of sensor-based material flow 
data has been demonstrated to improve prediction accuracy (Kroell 
et al., 2023a), as, e.g., particle-specific deviations in grammages can be 
smoothed out. Therefore, Fig. 2d shows the influence of different chunk 
sizes (time windows over which the data was aggregated [Kroell et al., 
2023a]) on the model performance. 

As shown in Fig. 2d, prediction errors decline super-linear with 
increasing chunk size. For chunk sizes above 30 minutes, nMUs 
of ≤ 6.9 % are achieved. As illustrated for exemplary chunk sizes in 
Fig. 2d, even small data aggregation can already effectively reduce 
prediction errors. 

4.1.3. Influences of training size 
Another way to improve model performance is to increase the 

amount of provided training data (Goodfellow et al., 2016). As the 
original training set was relatively small (n = 83 trials; 20% of the total 
dataset), the question arises whether the performance of the model 
could be improved with more training data. On the other hand, as the 
generation of training data is costly (e.g., high personal expenses for 
manual sorting), it is also of high practical interest whether a similar 
level of performance could be achieved with even less training data. 

To address both questions, Fig. 2d shows the model performance for 
different training sizes across different chunk sizes. It becomes evident 
that in this case, the model performance does not substantially increase 
with increasing training size: While the mean nMU95 over all investi
gated chunk sizes (25 s – 80 min) at 20% training size (n = 83 trials) is 
11.1%, it only decreases to 10.8%, when doubling the training size to 
40% (n = 166 trials). Furthermore, with only 10% training data (n = 41 
trials), a comparable model performance with a mean nMU95 of 11.8% 
over all chunk sizes was still achieved. 

4.1.4. Model robustness 
Fig. 2e shows the coefficients of the trained models for different 

training sizes to further validate the model robustness and study the 
influence of different training sizes on the model. As shown, the model 
demonstrates increased stability with increasing training size, showing 
stable predictions for training sizes greater than 10%. 

The model predictions appear plausible, since the coefficient for the 
material class PET (= target material class in the investigated PET tray 
fraction) is nearly zero across all trained models, thus not influencing 
the impurity content. Negative model coefficients are observed for the 
material classes PE, PP, and UNDEF. The negative PE and PP coefficients 
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Fig. 2. NIR-based impurity mass flow prediction at monolayer presentation [NIR A1]. (a) Overview of measured impurities determined by human experts and 
applied train-test-split, (b) impurity prediction using grammages and ML compared to ground truth, (c) influence of data aggregation on prediction errors of ML 
model A, (d) influence of training size on the prediction performance of ML model A, (e) distribution of model coefficients of ML model A trained across different 
training sizes and chunk sizes from [d]. Δtbale: average production time of a PET tray bale in test series A. 
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are likely the model’s correction for composite effects (discrepancy be
tween article- and material-based purity, cf. Section 2.2) as films of PET 
tray packaging and bottle caps belonging to PET bottles are frequently 
made of PE and PP (Roosen et al., 2020). The negative value and high 
variation of the UNDEF coefficient could indicate an attempt of the 
model to correct misclassifications as well as unknown material classes 
within the UNDEF material classes from the NIR A1 sensor. In contrast, 
positive model coefficients are especially found for PS and PPC, which 
supports the hypothesis that the model might have chosen PS and PPC as 
leading indicators for high impurity contents. 

In summary, ML model A demonstrates superior performance in 
predicting impurity mass flows compared to the grammage model by 
effectively taking discrepancies between article-based and material- 
based purity definitions into account through material-specific weight 
adjustments. Data aggregation has a significant impact on model per
formance, with prediction errors declining super-linearly as chunk size 
increases. Notably, even a small amount of training data (10% of the full 
dataset) can yield comparable model performance. The final model, 
trained on only n = 83 trials (20% training size) combined with a 67- 
minute aggregation (corresponding to the average production time of 
one PET tray bale), can predict impurity mass flows with a nMU95 of 
3.2%. 

4.2. Comparison between SBQC and MQC at monolayer presentation 
(RQ 2) 

Fig. 3 compares the accuracy (MU [wt%]) between SBQC based on 
NIR A1 and MQC across different sample sizes for 1,000 simulated PET 
tray bales (cf. Section 3.4). As shown by the MQC line in Fig. 3, the 
measurement uncertainty of MQC caused by the sampling error de
creases quadratically with increasing sample sizes, and a “diminishing 
return” effect is observed, i.e., with increasing sample sizes the addi
tional measurement accuracy gained by larger sample sizes flattens out. 
High MUs (> 5 wt%) are observed when simulating MQC according to 
CEN/TR 15310-1 (2006) [MU95= 6.7 wt%] and LAGA PN 98 (2001) 
[MU95= 5.6 wt%]. In contrast, higher sample sizes specified in technical 
MQC guidelines for pre-concentrates as well as the ÖNORM S 2127 
(2011) lead to reasonable MUs (≤ 1.5 wt%) when simulating MQC ac
cording to GBP Quality GmbH (2023) [MU95= 1.5 wt%], COREPLA 
(2022) [MU95= 1.3 wt%], Der Grüne Punkt (2016) [MU95= 1.0 wt%], 
and ÖNORM S 2127 (2011) [MU95= 0.8 wt%]. 

Since SBQC methods require no sampling, the proposed method 
using ML model A achieves a constant MU95 of 0.31 wt%, which is 
significantly lower than MUs of MQC with sample sizes specified by 
technical norms and guidelines (Fig. 3). In fact, between 351 kg (58.5 wt 
%) and 386 kg (64.3 wt%) of the simulated PET tray bales must have 
been sampled and manually sorted to achieve equal or lower MUs by 
traditional MQC methods. Using the estimate of 4 to 6 person-hours to 
analyze a sample of 80 kg to 90 kg from Borowski (2018) (cf. Section 
1.1), this would amount to between 15.6 to 29.0 person-hours per bale 
to achieve the same accuracy using MQC than with the proposed SBQC 
method. 

4.3. Variation in predicted pre-concentrate purities (RQ 3) 

To demonstrate the potential benefits of SBQC and to estimate purity 
fluctuations (RQ 3), Fig. 4a shows the area-based purity distribution of 
the n = 17 PET tray bales that were produced during the sensor mea
surements of test series B. Among these analyzed bales, the area-based 
purities ranged between 68.3 area percent (a%) and 77.6 a% and with 
a standard deviation of 3.1 a%. 

Notably, the area-based purity of bales produced during the early 
and late shifts (mean purity: 75.8 a%) was statistically significantly 
higher (p ≤ 0.015) compared to night shifts (70.3 a%). A likely reason 
for this are the different input materials, which are processed during the 
early and late shifts (input material 1) and night shifts (input material 2) 
in the investigated sorting plant. 

According to the SBQC data, the two input materials affect different 
impurities to different degrees (Fig. 4b). When input material 2 is pro
cessed (night shift), the PET tray product contains statistically signifi
cant (p ≤ 0.01) more PPC (+6.5 a%) and UNDEF (+0.6 a%) material and 
significantly less target material and other plastics (PET: -5.5 a%, PP: 
-0.8 a%, PE: -0.9 a%, PS: -0.1 a%). A likely reason for this is the different 
characteristics of the two input materials (e.g., material flow composi
tion, particle size distribution, and water content), which influence the 
sorting plant operation (e.g., Kroell et al., 2022b; Küppers et al., 2020; 
Küppers et al., 2021; Küppers et al., 2022). 

4.4. SBQC at multilayered material flow presentation (RQ 4) 

Fig. 5 shows the feasibility of SBQC at multilayered material flow 
presentations (αNIR B2) by comparing the material flow composition of 
plastic pre-concentrate bales measured with MQC (ŵMQC; Section 4.4.1) 
and SBQC at monolayer presentation (αNIR B1; Section 4.4.2). In addition 
to individual values (unfilled markers), mean values (filled markers) and 
their distance from the ideal correlation line are displayed. 

4.4.1. NIR B2 vs. MQC 
In test series B, n = 103 pre-concentrate bales were analyzed in total 

by NIR B2. n = 30 of these bales (nPET tray = 13, nPET bottle = 4, nPP = 5, 
nHDPE = 4, nPS = 4) were also sampled and their composition was 
manually analyzed (cf. Section 3.2.5). 

In Fig. 5, all bales other than the PET tray bale marked with “**”, 
which is determined by NIR B1, are determined by MQC. These Non-“X”- 
markers for PET tray, PET bottle, PP, HDPE and PS compare the bale 
compositions determined by MQC (mass-based and article-based purity 
definition; cf. Section 2.2) with bale compositions determined by NIR B2 
(area-based and material-based purity definition; cf. Section 2.2). 
Different colors indicate material fractions within a bale. For example, 
a red circle represents the mass-based PE share (red) within a PP bale 
(circle). 

Even though the estimated material shares of NIR B2 and MQC are 
determined based on a different counting basis (mass-based vs. area- 
based) and based on different purity definitions (article- and material- 
based), a general correspondence between NIR B2 and MQC purities 
can be observed across all bale types (MU95, purity, PET tray = 10.3%, 
MU95, purity, PET bottle = 5.0%, MU95, purity, PP = 5.7%, MU95, purity, HDPE =

3.4%, MU95, purity,PS = 8.6%). 
Likewise, there is a reasonable correspondence between MQC- and 

NIR-based impurity shares. Here, MU95 values are slightly lower since 
the impurities have a much lower share compared to the purities 
(MU95, impurities, PET tray = 2.4%, MU95, impurities, PET bottle = 0.9%, 
MU95, impurities, PP = 1.3%, MU95, impurities, HDPE = 1.3%, MU95, impurities, PS 

= 1.7%). However, in relative terms, the consistency of purities 
(nMU95, purity = 7.2%) is considerably more accurate compared to im
purities (nMU95, impurity = 202.1%). A possible explanation may be that 
the influence of individual particles on the total material content is 
higher for impurities due to the lower particle number of impurities 
compared to target materials. 

While these numbers indicate the general feasibility of SBQC at 
multilayered material flow presentations, the following limitations of 
this comparison have to be considered: 

5 p-values express the level of significance. Here, we calculated the p-value 
based on the Mann–Whitney U test, Mann and Whitney (1947). 
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• First, MQC with the initially chosen sample sizes in this study (180 L) 
is associated with a considerable sampling error (see Section 4.2), 
which can, for example, be observed by high variation of the MQC 
analysis results (0.97 wt% standard deviations [per material class 
and bale type, macro-average]) compared to the lower variation in 
the NIR B2 compositions (0.19 a% standard deviation).  

• Second, as discussed earlier, NIR B2 and MQC data have different 
counting basis (mass-based vs. area-based) and purity definitions 
(cf. Section 2.2). Applying appropriate area-to-mass-prediction 
models and pixel-to-article-based conversion models might thus 
reduce the differences between both data sources (Kroell et al., 2021; 
Kroell et al., 2023a).  

• Third, independent of the previous effects, SBQC at a multilayered 
material flow presentation can differ from SBQC at a monolayered 

material flow presentation and MQC, if the analyzed material flow 
surface by NIR B2 differs from the area-based composition of the full 
bale (see Section 4.4.2). 

To investigate the influences of multilayered material flow presen
tation independent from the previous effects, Section 4.4.2 compares the 
area-based bale compositions determined by NIR B1 and NIR B2 for the 
investigated PET tray bales. 

4.4.2. NIR B2 vs. NIR B1 
“X”-markers in Fig. 5 compare the area-based bale compositions 

determined by NIR B2 and NIR B1 for PET tray bales. Due to the absence 
of a sampling error, less deviation occurs in NIR B1 measurements 
compared to MQC, such that potential systematic effects are easier to be 

Fig. 3. Comparison of inline SBQC using NIR and ML with MQC using different sampling sizes at monolayer presentation [NIR A1]; markers: minimum sample sizes 
according to CEN/TR 15310-1 (2006), LAGA PN 98 (2001), ÖNORM S 2127 (2011), GBP Quality GmbH (2023), COREPLA (2022), and Der Grüne Punkt (2016). 

Fig. 4. Area-based (a) purity and (b) impurity distribution per bale between plant input 1 (early and late shift, left violin) and plant input 2 (night shift, right violin) 
[NIR B1]; solid line: median, dashed line: 25 % and 75 % percentile. 
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identified. 
When analyzing the PET tray purities (Fig. 5b), a high correlation 

between NIR B2 and NIR B1 can be observed with a Pearson correlation 
coefficient (PCC) of 0.915 (Pearson, 1895). A systematic overestimation 
of NIR B2 is observed with area-based PET shares on average +12.9 a% 
higher when measured with NIR B2 compared with NIR B1. 

Likewise, PET tray impurity shares (Fig. 5c) correlate to a higher 
extent between NIR B2 and NIR B1 for the material classes PPC (PCC =
0.989), PS (PCC = 0.873), PE (PCC = 0.831), to a lower extent for PP 
(PCC = 0.601) and BC (PCC = 0.529), and no correlation is found for 
UNDEF materials. A closer look at Fig. 5c reveals that PE shares were 
always overestimated by NIR B2 compared to NIR B1 by +1.4 a% on 
average, while other material classes were mostly underestimated by 
NIR B2 to different extents (PPC: -7.8 a%, PP: -3.4 a%, BC: -1.7 a%, PS: 
-0.2 a%, UNDEF: -1.1 a%). These observations are consistent with the 
findings described in (Kroell et al., 2023a) and might have been caused 
by the following two mechanisms: 

4.4.2.1. Different classification behavior at multilayered material flow 
presentation. At NIR B1, NIR spectra of particles are measured as a 
monolayer on top of a carbon-black conveyor belt. For transparent 
material, like PET trays, very thin-walled parts of packaging articles can 
result in a low spectral intensity due to the carbon-black surface un
derneath, which can cause the classification of some article parts as 
background by the NIR classification algorithms. However, at NIR B2, 
the material flow surface is measured on top of several underlying ma
terial layers. Therefore, even thin-walled parts of transparent articles are 
laying on top of several other particles, which results in higher spectral 
intensity and the classification of all article parts as the corresponding 
material instead of background (mixed NIR spectra are classified as the 
material on top with the used algorithm, cf. Section 3.2.2). As a conse
quence, the recognized area of transparent and thin-walled articles is 
higher at NIR B2 compared to NIR B1, resulting in a higher material 
share. As a lot of transparent and thin-walled packaging items (e.g., 
trays, foils, multilayered packaging) are made of PET and PE, this 
mechanism might partially explain why the material classes PET and PE 
were overestimated by NIR B2. 

4.4.2.2. Segregation effects. Based on our previous experience, the re
sults of Kroell et al. (2023a), and the analysis of the NIR false-color 
images, we assume that the +12.9% PET overestimation is too high to be 
caused solely by differences in the NIR classification behavior. The PET 
overestimation could have been caused by segregation effects, e.g., by 
the accumulation of two-dimensional PET trays on the material flow 
surface measured by NIR B2. In addition, variations in particle charac
teristics such as particle size and shape resulting from different materials 
used in different packaging applications could further increase segre
gation effects. Further research and a more robust understanding of 
segregation mechanisms for post-consumer packaging are required to 
verify or falsify this hypothesis. 

In summary, NIR-based SBQC at multilayered material flow pre
sentation (bale press feeding belt, P2) seems feasible in general with 
reasonable correspondence between NIR B2 and MQC as well as NIR B1 
measurement. However, a deeper understanding of segregation effects 
and a development of correction as well as area-to-mass models is 

(caption on next column) 

Fig. 5. Feasibility of SBQC at multilayered material flow presentation. (a) 
Differences in area-based material flow compositions between NIR B1 (mono
layered material flow presentation, sensor position P1) and NIR B2 (multilay
ered material flow presentation, sensor position P2) for PET-tray bales and 
between area-based material flow composition using NIR B2 and mass-based 
MQC (sample size = 180 L) for plastic pre-concentrate bales, (b) zoom-in of 
[a] on purities, (c) zoom-in of [a] on impurities; * mass-based and article-based 
purity determined by MQC (ŴMQC), ** area-based and material-based purity 
determined by NIR B1 (αNIR B1). 
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necessary to achieve SBQC predictions with accuracies of practical 
relevance at multilayered material flow presentations (sensor position 
P2) in the future. 

5. Conclusions 

The plastic recycling value chain is currently suffering from a high 
degree of intransparency since MQC procedures for post-consumer 
plastic pre-concentrates are time-consuming, cost-intensive, and thus 
only performed on an irregular basis. Inline sensor technology promises 
to overcome these limitations by enabling an automated monitoring of 
produced pre-concentrate qualities. While numerous studies showed the 
high accuracy of plastic discrimination using NIR spectroscopy at pixel- 
and particle levels, it remained unclear if NIR-based quality control of 
plastic pre-concentrates at the material flow level and plant scale is 
technically feasible. Further, it remained unclear how the achieved ac
curacy of an SBQC approach compares to traditional MQC in the form of 
manual sorting analysis of taken samples. 

In two test series, we showed that SBQC at plant scale is not only 
technically feasible, but ML-based SBQC predictions can be even more 
accurate than traditional sampling-based methods. Since the purities of 
plastic pre-concentrates are determined by a mass- and article-based 
purity definition in current technical norms and industrial practice (cf. 
Section 2.2), comparable purities from the pixel-based NIR-false-color- 
data should be predicted using, e.g., ML methods, to account for com
posite effects in post-consumer packaging (difference between article- 
and material-based purity definition, cf. Section 2.2). The high data 
aggregation due to an average bale production time of several minutes 
up to an hour (here: 67 minutes) evens out prediction errors at lower 
time scales and achieves purity predictions with high accuracies 
(±3.2% normalized measurement uncertainty) [RQ 1]. 

A direct comparison of SBQC and MQC to predict the purity of 600 kg 
PET tray bales demonstrates the advantages of the SBQC method: When 
following technical norms and guidelines for MQC, bale purities could 
be determined with measurement uncertainties (95th percentile of ab
solute errors) between ±6.7 wt% (0.9 kg sample size [CEN/TR 15310-1, 
2006]) to ±0.8 wt% (123 kg sample size [ÖNORM S 2127, 2011]). The 
proposed SBQC method predicted bale purities within ±0.31 wt% 
measurement uncertainty. In fact, we estimate that the required total 
sample mass for MQC must have been ≥ 350 kg, i.e., more than half of 
the total PET tray bale and thus way beyond any reasonable MQC 
practice, to be more accurate than SBQC [RQ 2]. 

Another benefit of SBQC data could be demonstrated by identifying 
significant variations in the area-based material flow composition of the 
PET tray pre-concentrate caused by two different input materials of the 
sorting plant coming from two different collection areas. To obtain 
comparable knowledge using MQC, a high personnel effort in both day 
and night shifts would be necessary. Since investigation of this type are 
costly, many relevant parameters in sorting plants have remained un
detected in the past [RQ 3]. 

To potentially monitor several pre-concentrates simultaneously with 
a single NIR sensor in the future, the technical feasibility of SBQC with 
multi-layered material flow presentations (feeding conveyor belt to bale 
press) was investigated. A good correlation was found between area- 
based purities measured at mono- and multi-layered material flow pre
sentation with a high Pearson correlation coefficient of 0.915. System
atic deviations between monolayered and multilayered material flow 
presentations due to segregation effects and changes in the NIR classi
fication behavior reported by previous studies (Kroell et al., 2023a) were 
confirmed, resulting in the need for a better understanding of segrega
tion effects and the development of possible correction models [RQ 4]. 

Several directions for future research emerge from our work: Our 
investigations could be extended to other pre-concentrates or types of 
sorting and processing plants. In addition, the NIR sensor could be 
complemented by additional sensors such as RGB cameras and/or with 
deep learning techniques, e.g., to detect contaminants of the same 

material such as HDPE silicon cartridges in a HDPE pre-concentrate or to 
enable a quality assessment for color-sorted fractions. Further, long- 
term sensor measurements are needed to analyze the stability of the 
developed ML models under seasonal fluctuations, changing packaging 
designs, different waste collection areas/schemes, frequency of outlier 
impurities, or differing plant operations and to develop and test poten
tial recalibration strategies (e.g., DIN 54390, 2022; Flamme et al., 
2020). The economics of SBQC could be enhanced by either utilizing 
more cost-effective sensor technologies (e.g., RGB cameras) or enabling 
the previously mentioned SBQC at multilayered material flow pre
sentations to monitor multiple pre-concentrates with a single sensor. To 
reduce the costs for model training and adaptation at multiple 
measuring points or in multiple sorting plants, the development of 
time-/cost-efficient methods for generating the necessary ground truth 
data as well as the application of transfer and feathered learning ap
proaches could be of further interest. 

Ultimately, our research underlines the promising opportunities of 
sensor technology in post-consumer plastic recycling beyond today’s 
sorting applications. By fostering transparency, incentives for improved 
sorting could be established and realized through adaptive process 
control in sorting and processing plants, contributing to a boost in 
recyclate quality and yields and a sustainable circular economy. 
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